Skip to content

Commit

Permalink
Minor proof shortenning
Browse files Browse the repository at this point in the history
  • Loading branch information
hivert committed Jan 21, 2024
1 parent 1ed4aa1 commit b77c3d7
Showing 1 changed file with 7 additions and 7 deletions.
14 changes: 7 additions & 7 deletions theories/SymGroup/weak_order.v
Original file line number Diff line number Diff line change
Expand Up @@ -277,16 +277,16 @@ have {}Hm (k l : 'I_n) :
by rewrite pIt pNIs eq_refl.
have {Hm m0 eqm tjltti} Heq : m = 1%N.
have {}incl (k l : 'I_n) : k < l -> s k > s l -> t k > t l.
by move=> kltl; move: incl => /subsetP/(_ (k, l)); rewrite !inE kltl.
by move=> kltl; move: incl => /subsetP/(_ (k, l))/[!inE]/[!kltl].
apply anti_leq; rewrite {}m0 andbT {Hd IHd}.
rewrite leqNgt; apply/negP => Habs.
pose k := (t^-1 (inord (t j).+1)).
have tk : t k = (t j).+1 :> nat.
by rewrite /k permKV inordK // ltnS (leq_trans tjltti _) // -ltnS.
suffices []: (m <= t k - t j) \/ (m <= t i - t k).
- by rewrite tk subSn // subnn => /(leq_trans Habs); rewrite ltnn.
- rewrite tk; rewrite -eqm.
case: (val (t i)) tjltti => //= u; rewrite ltnS => Hu.
- by rewrite tk subSn // subnn => /(leq_trans Habs)/[!ltnn].
- rewrite tk -eqm.
case: (val (t i)) tjltti => //= u /[!ltnS] Hu.
by rewrite subSS subSn // ltnn.
case: (ltngtP k i) => [klti | iltk | /val_inj Hk]; last 1 first.
- by move: Habs; rewrite -eqm -Hk tk subSn // ?subnn ltnn.
Expand Down Expand Up @@ -330,7 +330,7 @@ have {Himi Himj} invsett : invset t = (i, j) |: invset (t * 's_(t j)).
have {invsett} {}/IHd : invset s \subset invset (t * 's_(t j)).
move: incl; rewrite {}invsett => /subsetP Hsubs.
apply/subsetP => /= [[k l] H].
move/(_ _ H): Hsubs; rewrite !inE /= => /orP[] // /eqP Heq.
move/(_ _ H): Hsubs => /[!inE] /orP[] // /eqP Heq.
exfalso; move: H; rewrite {}Heq /invset !inE /= iltj /=.
by rewrite ltnNge (ltnW siltsj).
move/le_trans; apply.
Expand Down Expand Up @@ -398,7 +398,7 @@ constructor; rewrite /=.
+ move/(_ _ Hp Hk p0ltj): IHp => {p Hk Hp} /orP[|->]; last by right.
by move/(connect_trans (connect1 (e := srel AUB) ip0AB)); left.
+ wlog ip0 : A B HAUB isA isB ip0AB / (i, p0) \in A.
subst AUB; move=> Hlog; move: ip0AB; rewrite inE => /orP[] Hip0.
subst AUB; move=> Hlog; move: ip0AB => /[!inE] /orP[] Hip0.
* by have:= Hip0 => {}/(Hlog A B); apply; rewrite //= inE Hip0.
* by have:= Hip0 => {}/(Hlog B A); apply; rewrite // setUC // inE Hip0.
suffices: ((i, j) \in AUB) || ((j, p0) \in AUB).
Expand Down Expand Up @@ -443,7 +443,7 @@ Qed.
Lemma suppermPr s t : s <=R (supperm s t).
Proof.
rewrite !leperm_invset; rewrite invset_supperm /tclosure.
apply/subsetP => /= [[i j] Hinv]; rewrite !inE /=.
apply/subsetP => /= [[i j] Hinv] /[!inE] /=.
rewrite neq_ltn (DeltaP ((subsetP (invset_Delta s)) _ Hinv)) /=.
by apply/connectP; exists [:: j]; rewrite //= inE Hinv /=.
Qed.
Expand Down

0 comments on commit b77c3d7

Please sign in to comment.