forked from piskvorky/sim-shootout
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_shootout.py
executable file
·152 lines (121 loc) · 6.39 KB
/
prepare_shootout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (C) 2013 Radim Rehurek <[email protected]>
"""
USAGE: %(program)s enwiki-latest-pages-articles.xml.bz2 OUTPUT_DIRECTORY
Parse all articles from a raw bz2 Wikipedia dump => train a latent semantic model on the \
articles => store resulting files into OUTPUT_DIRECTORY:
* title_tokens.txt.gz: raw article titles and tokens, one article per line, "article_title[TAB]space_separated_tokens[NEWLINE]"
* dictionary: mapping between word<=>word_id
* dictionary.txt: same as `dictionary` but in plain text format
* tfidf.model: TF-IDF model
* lsi.model: model for latent semantic analysis model, trained on TF-IDF'ed wiki dump
* lsi_vectors.mm: wikipedia articles stored as vectors in LSI space, in MatrixMarket format
The input wikipedia dump can be downloaded from http://dumps.wikimedia.org/enwiki/latest/
Example:
./prepare_shootout.py ~/data/wiki/enwiki-latest-pages-articles.xml.bz2 ~/data/wiki/shootout
"""
import logging
import os
import sys
import multiprocessing
import bz2
import gensim
logger = logging.getLogger('prepare_shootout')
PROCESSES = max(1, multiprocessing.cpu_count() - 1) # parallelize parsing using this many processes
MIN_WORDS = 50 # ignore articles with fewer tokens (redirects, stubs etc)
NUM_TOPICS = 500 # number of latent factors for LSA
def process_article((title, text)):
"""Parse a wikipedia article, returning its content as `(title, list of tokens)`, all utf8."""
text = gensim.corpora.wikicorpus.filter_wiki(text) # remove markup, get plain text
return title.encode('utf8').replace('\t', ' '), gensim.utils.simple_preprocess(text)
def convert_wiki(infile, processes=multiprocessing.cpu_count()):
"""
Yield articles from a bz2 Wikipedia dump `infile` as (title, tokens) 2-tuples.
Only articles of sufficient length are returned (short articles & redirects
etc are ignored).
Uses multiple processes to speed up the parsing in parallel.
"""
logger.info("extracting articles from %s using %i processes" % (infile, processes))
articles, articles_all = 0, 0
positions, positions_all = 0, 0
pool = multiprocessing.Pool(processes)
# process the corpus in smaller chunks of docs, because multiprocessing.Pool
# is dumb and would try to load the entire dump into RAM...
texts = gensim.corpora.wikicorpus._extract_pages(bz2.BZ2File(infile)) # generator
for group in gensim.utils.chunkize(texts, chunksize=10 * processes):
for title, tokens in pool.imap(process_article, group):
if articles_all % 100000 == 0:
logger.info("PROGRESS: at article #%i: '%s'; accepted %i articles with %i total tokens" %
(articles_all, title, articles, positions))
articles_all += 1
positions_all += len(tokens)
if len(tokens) >= MIN_WORDS and not title.startswith('Wikipedia:'): # article redirects and short stubs are pruned here
articles += 1
positions += len(tokens)
yield title, tokens
pool.terminate()
logger.info("finished iterating over Wikipedia corpus of %i documents with %i positions"
" (total %i articles, %i positions before pruning articles shorter than %i words)" %
(articles, positions, articles_all, positions_all, MIN_WORDS))
class ShootoutCorpus(gensim.corpora.TextCorpus):
def get_texts(self):
lines = gensim.corpora.textcorpus.getstream(self.input) # open file/reset stream to its start
for lineno, line in enumerate(lines):
yield line.split('\t')[1].split() # return tokens (ignore the title before the tab)
self.length = lineno + 1
if __name__ == '__main__':
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s')
logging.root.setLevel(level=logging.INFO)
logger.info("running %s" % ' '.join(sys.argv))
# check and process input arguments
program = os.path.basename(sys.argv[0])
if len(sys.argv) < 3:
print globals()['__doc__'] % locals()
sys.exit(1)
infile, outdir = sys.argv[1:3]
outfile = lambda fname: os.path.join(outdir, fname)
# extract plain text from the XML dump
preprocessed_file = outfile('title_tokens.txt.gz')
if not os.path.exists(preprocessed_file):
id2title = []
with gensim.utils.smart_open(preprocessed_file, 'wb') as fout:
for docno, (title, tokens) in enumerate(convert_wiki(infile, PROCESSES)):
id2title.append(title)
try:
line = "%s\t%s" % (title, ' '.join(tokens))
fout.write("%s\n" % gensim.utils.to_utf8(line)) # make sure we're storing proper utf8
except:
logger.info("invalid line at title %s" % title)
gensim.utils.pickle(id2title, outfile('id2title'))
# build/load a mapping between tokens (strings) and tokens ids (integers)
dict_file = outfile('dictionary')
if os.path.exists(dict_file):
corpus = ShootoutCorpus()
corpus.input = gensim.utils.smart_open(preprocessed_file)
corpus.dictionary = gensim.corpora.Dictionary.load(dict_file)
else:
corpus = ShootoutCorpus(gensim.utils.smart_open(preprocessed_file))
corpus.dictionary.filter_extremes(no_below=20, no_above=0.1, keep_n=50000) # remove too rare/too common words
corpus.dictionary.save(dict_file)
corpus.dictionary.save_as_text(dict_file + '.txt')
# build/load TF-IDF model
tfidf_file = outfile('tfidf.model')
if os.path.exists(tfidf_file):
tfidf = gensim.models.TfidfModel.load(tfidf_file)
else:
tfidf = gensim.models.TfidfModel(corpus)
tfidf.save(tfidf_file)
# build/load LSI model, on top of the TF-IDF model
lsi_file = outfile('lsi.model')
if os.path.exists(lsi_file):
lsi = gensim.models.LsiModel.load(lsi_file)
else:
lsi = gensim.models.LsiModel(tfidf[corpus], id2word=corpus.dictionary, num_topics=NUM_TOPICS, chunksize=10000)
lsi.save(lsi_file)
# convert all articles to latent semantic space, store the result as a MatrixMarket file
# normalize all vectors to unit length, to simulate cossim in libraries that only support euclidean distance
vectors_file = os.path.join(outdir, 'lsi_vectors.mm')
gensim.corpora.MmCorpus.serialize(vectors_file, (gensim.matutils.unitvec(vec) for vec in lsi[tfidf[corpus]]))
logger.info("finished running %s" % program)