This project adds Bigquery consumers to Debezium Server. This consumer replicates RDBMS CDC events to Bigquery in real time.
Writes debezium events to Bigquery using BigQuery Storage Write API. It groups CDC events and appends to destination BigQuery table using BigQuery Write API .
Config | Default | Description |
---|---|---|
debezium.sink.bigquerybatch.dataset |
Destination Bigquery dataset name | |
debezium.sink.bigquerybatch.location |
US |
Bigquery table location |
debezium.sink.bigquerybatch.project |
Bigquery project | |
debezium.sink.bigquerybatch.create-disposition |
CREATE_IF_NEEDED |
Create tables if needed |
debezium.sink.bigquerybatch.partition-field |
__ts_ms |
Partition target tables by __ts_ms field |
debezium.sink.bigquerybatch.clustering-field |
__source_ts_ms |
Cluster target tables by PK + __source_ts_ms field |
debezium.sink.bigquerybatch.partition-type |
MONTH |
Partitioning type |
debezium.sink.bigquerybatch.allow-field-addition |
true |
Allow field addition to target tables |
debezium.sink.bigquerybatch.allow-field-relaxation |
true |
Allow field relaxation |
debezium.sink.bigquerybatch.credentials-file |
GCP service account credentialsFile | |
debezium.sink.bigquerybatch.cast-deleted-field |
false |
Cast deleted field to boolean type(by default it is string type) |
debezium.sink.batch.destination-regexp |
`` | Regexp to modify destination. With this its possible to map table_ptt1 ,table_ptt2 to table_combined . |
debezium.sink.batch.destination-regexp-replace |
`` | Regexp Replace part to modify destination |
debezium.sink.batch.batch-size-wait |
NoBatchSizeWait |
Batch size wait strategy to optimize data files and upload interval. explained below. |
Streams debezium events to Bigquery using the Storage Write API.
Config | Default | Description |
---|---|---|
debezium.sink.bigquerystream.dataset |
Destination Bigquery dataset name | |
debezium.sink.bigquerystream.location |
US |
Bigquery table location |
debezium.sink.bigquerystream.project |
Bigquery project | |
debezium.sink.bigquerystream.ignore-unknown-fields |
if true, unknown Json fields to BigQuery will be ignored instead of error out. | |
debezium.sink.bigquerystream.create-if-needed |
true |
Creates Bigquery table if not found |
debezium.sink.bigquerystream.partition-field |
__ts_ms |
Partition target tables by __ts_ms field |
debezium.sink.bigquerystream.clustering-field |
__source_ts_ms |
Cluster target tables by PK + __source_ts_ms field |
debezium.sink.bigquerystream.partition-type |
MONTH |
Partitioning type |
debezium.sink.bigquerystream.allow-field-addition |
false |
Allow field addition to target tables |
debezium.sink.bigquerystream.credentials-file |
GCP service account credentialsFile | |
debezium.sink.bigquerystream.cast-deleted-field |
false |
Cast deleted field to boolean type(by default it is string type) |
debezium.sink.batch.destination-regexp |
`` | Regexp to modify destination. With this its possible to map table_ptt1 ,table_ptt2 to table_combined . |
debezium.sink.batch.destination-regexp-replace |
`` | Regexp Replace part to modify destination |
debezium.sink.batch.batch-size-wait |
NoBatchSizeWait |
Batch size wait strategy to optimize data files and upload interval. explained below. |
debezium.sink.bigquerystream.upsert |
false |
Running upsert mode overwriting updated rows. Using Bigquery CDC feature |
debezium.sink.bigquerystream.upsert-keep-deletes |
true |
With upsert mode, keeps deleted rows in bigquery table. |
debezium.sink.bigquerystream.upsert-dedup-column |
__source_ts_ms |
With upsert mode used to deduplicate data. row with highest __source_ts_ms is kept. |
debezium.sink.bigquerystream.upsert-op-column |
__op |
Used with upsert mode to deduplicate data when __source_ts_ms of rows are same. |
By default, Bigquery Streaming consumer is running with append mode debezium.sink.iceberg.upsert=false
.
Upsert mode uses source Primary Key and does upsert on target table(delete followed by insert). For the tables without
Primary Key consumer falls back to append mode.
With upsert mode data deduplication is done. Deduplication is done based on __source_ts_ms
value and event type __op
.
its is possible to change this field using debezium.sink.bigquerystream.upsert-dedup-column=__source_ts_ms
(Currently
only
Long field type supported.)
Operation type priorities are {"c":1, "r":2, "u":3, "d":4}
. When two records with same key and same __source_ts_ms
values received then the record with higher __op
priority is kept and added to destination table and duplicate record
is dropped from stream.
debezium.format.value=json
debezium.format.key=json
debezium.format.schemas.enable=true
Bigquery consumers requires event flattening, please see debezium feature
debezium.transforms=unwrap
debezium.transforms.unwrap.type=io.debezium.transforms.ExtractNewRecordState
debezium.transforms.unwrap.add.fields=op,table,lsn,source.ts_ms
debezium.transforms.unwrap.add.headers=db
debezium.transforms.unwrap.delete.handling.mode=rewrite
Debezium extracts database events in real time and this could cause too frequent commits or too many small files which is not optimal for batch processing especially when near realtime data feed is sufficient. To avoid this problem following batch-size-wait classes are used.
Batch size wait adds delay between consumer calls to increase total number of events received per call and meanwhile
events are collected in memory.
This setting should be configured together with debezium.source.max.queue.size
and debezium.source.max.batch.size
debezium properties
This is default configuration, by default consumer will not use any wait. All the events are consumed immediately.
MaxBatchSizeWait uses debezium metrics to optimize batch size.
MaxBatchSizeWait periodically reads streaming queue current size and waits until number of events reaches
to max.batch.size
or until debezium.sink.batch.batch-size-wait.max-wait-ms
.
Maximum wait and check intervals are controlled by debezium.sink.batch.batch-size-wait.max-wait-ms
, debezium.sink.batch.batch-size-wait.wait-interval-ms
properties.
example setup to receive ~2048 events per commit. maximum wait is set to 30 seconds, streaming queue current size checked every 5 seconds
debezium.sink.batch.batch-size-wait=MaxBatchSizeWait
debezium.sink.batch.metrics.snapshot-mbean=debezium.postgres:type=connector-metrics,context=snapshot,server=testc
debezium.sink.batch.metrics.streaming-mbean=debezium.postgres:type=connector-metrics,context=streaming,server=testc
debezium.source.connector.class=io.debezium.connector.postgresql.PostgresConnector
debezium.source.max.batch.size=2048;
debezium.source.max.queue.size=16000";
debezium.sink.batch.batch-size-wait.max-wait-ms=30000
debezium.sink.batch.batch-size-wait.wait-interval-ms=5000
This implementation saves CDC offset to a bigquery table.
debezium.source.offset.storage=io.debezium.server.bigquery.offset.BigqueryOffsetBackingStore
debezium.source.offset.storage.bigquery.table-name=debezium_offset_storage_custom_table
This implementation saves database history to a bigquery table.
debezium.source.database.history=io.debezium.server.bigquery.history.BigquerySchemaHistory
debezium.source.database.history.bigquery.table-name=__debezium_database_history_storage_test_table
quarkus.log.level=INFO
# Ignore messages below warning level from Jetty, because it's a bit verbose
quarkus.log.category."org.eclipse.jetty".level=WARN
#
- Requirements:
- JDK 11
- Maven
- Clone from repo:
git clone https://github.com/memiiso/debezium-server-bigquery.git
- From the root of the project:
- Build and package debezium server:
mvn -Passembly -Dmaven.test.skip package
- After building, unzip your server
distribution:
unzip debezium-server-bigquery-dist/target/debezium-server-bigquery-dist*.zip -d appdist
- cd into unzipped folder:
cd appdist
- Create
application.properties
file and config it:nano conf/application.properties
, you can check the example configuration in application.properties.example - Run the server using provided script:
bash run.sh
- Build and package debezium server:
The Memiiso community welcomes anyone that wants to help out in any way, whether that includes reporting problems, helping with documentation, or contributing code changes to fix bugs, add tests, or implement new features.