Skip to content

mengchen-wang/3cpdd

Repository files navigation

3CPDD

Code base

our code is based on ABdockgen

Dependencies

3D convolution

Data

Data for testing the basic functions are in folder data

To download the pretraining data set please run, this will take about 1 hour and generate a jsonl file with size 5G

python pdbfile/pretrain_data

Training

training script can be launched by

python dock_train.py --L_target 20 --save_dir ckpts/HERN-dock
python dock_train.py --L_target 20 --sparse_encoder --save_dir ckpts/HERN-dock
mkdir outputs
python predict.py ckpts/HERN-dock-sparse/model.best data/rabd/test_data.jsonl

It will produce a PDB file for each epitope in the test set.

Context given paratope Design

The training script can be launched by

python lm_train.py --L_target 20 --save_dir ckpts/HERN-gen
python lm_train.py --L_target 20 --sparse_encoder --save_dir ckpts/HERN-gen

At test time, we can generate new CDR-H3 paratopes specific to a given epitope:

python generate.py ckpts/HERN_gen.ckpt data/rabd/test_data.jsonl 1 > results/HERN.txt

The above script will generate one CDR-H3 sequence per epitope. You can sample more candidates by changing this parameter.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages