Pairwise GP for Preference Learning, Sampling Strategies
Introduces a new Pairwise GP model for Preference Learning with pair-wise preferential feedback, as well as a Sampling Strategies abstraction for generating candidates from a discrete candidate set.
Compatibility
New Features
- Add
PairwiseGPfor preference learning with pair-wise comparison data (#388). - Add
SamplingStrategyabstraction for sampling-based generation strategies, including
MaxPosteriorSampling(i.e. Thompson Sampling) andBoltzmannSampling(#218, #407).
Deprecations
- The existing
botorch.genmodule is moved tobotorch.generation.genand imports
frombotorch.genwill raise a warning (an error in the next release) (#218).
Bug fixes
- Fix & update a number of tutorials (#394, #398, #393, #399, #403).
- Fix CUDA tests (#404).
- Fix sobol maxdim limitation in
prune_baseline(#419).
Other changes
- Better stopping criteria for stochastic optimization (#392).
- Improve numerical stability of
LinearTruncatedFidelityKernel(#409). - Allow batched
best_finqExpectedImprovementandqProbabilityOfImprovement
(#411). - Introduce new logger framework (#412).
- Faster indexing in some situations (#414).
- More generic
BaseTestProblem(9e604fe).