-
Notifications
You must be signed in to change notification settings - Fork 36
popED
Kyle Baron edited this page Oct 4, 2019
·
1 revision
Samer Mouksassi and Kyle Baron 2019-07-03
library(tidyverse)
library(mrgsolve)
library(PopED)
mod <- mread("pop_ed_model.txt")
[ pkmodel ] cmt="DEPOT CENT PERI", depot=TRUE, trans = 11
[ param ]
CL=20, VC=70, Q=1, VP=30, KA = 0.25, WT= 70
[ main ]
double CLi = CL*pow(WT/70,0.75);
double V2i = VC*(WT/70);
double Qi = Q*pow(WT/70,0.75);
double V3i = VP*(WT/70);
double KAi = KA;
[ table ]
capture CP = CENT/V2i ;
The important part here is that we have a PK model parameters that are a
function of a covariate (WT
) and WT
is listed as a parameter.
data <-
expand.ev(amt=c(4,4,8,15)) %>%
mutate(ID=1:4, dose = amt*10, amt=amt*10000, WT=c(35,70,70,70))
out <-
mod %>%
data_set(data) %>%
Req(CP) %>%
carry_out(dose) %>%
mrgsim(end=48, delta=0.1)
plot(out,logy=TRUE)
I am using mrgsim_q
to get the simulation turned around as quickly as
possible, reducing overhead (and dropping features).
ff <- function(model_switch, xt, p, poped.db){
times_xt <- drop(xt)
dose_times <- 0
time <- sort(unique(c(times_xt,dose_times)))
is.dose <- time %in% dose_times
data <- data.frame(
ID = 1,
time = time,
amt = ifelse(is.dose,p[["DOSE"]], 0),
cmt = ifelse(is.dose, 1, 0)
)
data[["evid"]] <- data[["cmt"]]
mod <- param(mod, as.list(p))
out <- mrgsim_q(mod,data,recsort=4)
y <- out$CP[match(times_xt,out$time)]
return(list(y=matrix(y,ncol=1),poped.db=poped.db))
}
sfg.mrgsolve.cov <- function(x,a,bpop,b,bocc){
parameters=c(CL=bpop[1]*((a[3]/70)^0.75) *exp(b[1]),
VC=bpop[2]*((a[3]/70)^1)*exp(b[2]),
Q=bpop[3]*((a[3]/70)^0.75),
VP=bpop[4]*((a[3]/70)^1),
KA=bpop[5],
DOSE=a[1],
TAU =a[2],
WT =a[3]
)
return(parameters)
}
feps <- function(model_switch,xt,parameters,epsi,poped.db){
returnArgs <- do.call(poped.db$model$ff_pointer,list(model_switch,xt,parameters,poped.db))
y <- returnArgs[[1]]
poped.db <- returnArgs[[2]]
y = y*exp(epsi[,1])
return(list( y= y,poped.db =poped.db ))
}
poped.cov_mrg_poped <- create.poped.database(
ff_fun=ff,
fg_fun=sfg.mrgsolve.cov,
fError_fun=feps,
bpop=c(CL=20, VC=70,Q=1, VP=30, KA=0.25),
notfixed_bpop=c(1,1,1,0,0),
d=c(CL=0.08,VC=0.1),
sigma=c(0.05),
notfixed_sigma=c(1),
m=2,
groupsize=6,
xt=list(c(3,5,8,18),c(1,6,50,120)),
minxt=0,
maxxt=120,
bUseGrouped_xt=0,
a = cbind(DOSE=c(250,250), TAU=c(12,12),WT=c(35,70))
)
plot_model_prediction(poped.cov_mrg_poped,model_num_points = 5000) + theme_bw()
FIM <- evaluate.fim(poped.cov_mrg_poped)
det(FIM)
. [1] 961743530
get_rse(FIM, poped.cov_mrg_poped)
. bpop[1] bpop[2] bpop[3] D[1,1] D[2,2] SIGMA[1,1]
. 8.627307 12.026370 6.253843 44.933063 72.376153 28.601719