Skip to content

mithil27360/spotify-wrapped

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🎵 Spotify Wrapped AI

Project Structure

spotify-wrapped/
├── app.py                 # Main Streamlit story-flow app
├── requirements.txt       # Python dependencies
├── .gitignore
├── data/
│   └── SytheticData1000.csv    # Your Spotify listening data
├── src/
│   ├── data_pipeline.py   # Data loading & feature engineering
│   └── eda_analysis.py    # EDA visualizations
├── ml/
│   ├── user_classifier.py    # User personality classification
│   ├── mood_analyzer.py      # K-Means mood clustering
│   ├── genre_classifier.py   # Random Forest genre prediction
│   ├── taste_matcher.py      # ALS matrix factorization
│   ├── hybrid_recommender.py # Hybrid recommendation engine
│   └── model_trainer.py      # Model training pipeline
├── api/
│   └── fastapi_backend.py    # FastAPI REST API
└── docs/
    ├── IMPLEMENTATION_SUMMARY.md
    ├── PROJECT_STRUCTURE.md
    ├── QUICK_REFERENCE.md
    └── STREAMLIT_GUIDE.md

Quick Start

1. Install Dependencies

pip install -r requirements.txt

2. Run the App

streamlit run app.py

3. Open in Browser

Navigate to http://localhost:8501

ML Models

Model Purpose Algorithm
TasteMatcher User-track taste matching ALS Matrix Factorization
MoodAnalyzer Mood/vibe detection K-Means Clustering
GenreClassifier Genre prediction Random Forest
UserClassifier Personality types Rule-based + K-Means
HybridRecommender Track recommendations CF + Content-Based

Tech Stack

  • Frontend: Streamlit + Plotly
  • Backend: FastAPI
  • ML: scikit-learn, implicit
  • Data: pandas, numpy

License

MIT License

About

Spotify Wrapped

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •