Gluon implementation of some channel attention modules.
| Method | Paper |
Overview |
|---|---|---|
| SE | https://arxiv.org/abs/1709.01507 | ![]() |
| ECA | https://arxiv.org/abs/1910.03151 | ![]() |
| GCT | https://arxiv.org/abs/1909.11519 | ![]() |
Example of training resnet20_v1 with ECA:
python3 train_cifar10.py --mode hybrid --num-gpus 1 -j 8 --batch-size 128 --num-epochs 186 --lr 0.003 --lr-decay 0.1 --lr-decay-epoch 81,122 --wd 0.0001 --optimizer adam --random-crop --model cifar_resnet20_v1 --attention eca
| Model | Vanilla |
SE | ECA | GCT | ||||
|---|---|---|---|---|---|---|---|---|
| loss |
acc | loss | acc | loss | acc | loss | acc | |
| cifar_resnet20_v1 | 0.0344 | 0.9171 | 0.0325 | 0.9161 | 0.0302 | 0.9189 | 0.0292 | 0.9150 |
| cifar_resnet20_v2 | 0.1088 | 0.9133 | 0.0316 | 0.9162 | 0.0328 | 0.9194 | 0.0354 | 0.9172 |
| cifar_resnet56_v1 | 0.0431 | 0.9154 | 0.0280 | 0.9238 | 0.0170 | 0.9243 | 0.0244 | 0.9238 |
| cifar_resnet56_v2 | 0.0629 | 0.9165 | 0.0268 | 0.9243 | 0.0235 | 0.9218 | 0.0330 | 0.9200 |


