Skip to content

Commit c28b284

Browse files
committed
Fix typo
Note for self: search at replace at 1.30 am is always a bad idea Signed-off-by: Marcello Seri <[email protected]>
1 parent 7e0b507 commit c28b284

File tree

2 files changed

+5
-5
lines changed

2 files changed

+5
-5
lines changed

2-tangentbdl.tex

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -565,7 +565,7 @@ \section{The differential of a smooth map}\label{sec:diffsmooth}
565565
The construction that we employed forced us to fix a basis for the spaces, if this was truly necessary it would defeat the purpose of this whole chapter.
566566
Fortunately for us, the following exercise shows that, at any given point, the tangent space to a vector space is \emph{canonically}\footnote{That is, independently of the choice of basis.} identified with the vector space itself.
567567

568-
\begin{exercise}[\textit{[homework 1]}]\label{ex:tg_curve_iso}
568+
\begin{exercise}[\textit{[homework 2]}]\label{ex:tg_curve_iso}
569569
Let $V$ and $W$ be finite-dimensional vector spaces, endowed with their standard smooth structure (see Exercise~\ref{exe:subsetsmanifolds}).
570570
\begin{enumerate}
571571
\item Fix $a\in V$. For any vector $v\in V$ define a map $\cT_a(v) : C^\infty(V) \to \R$ by
@@ -1212,7 +1212,7 @@ \section{Submanifolds}
12121212
If for all $p\in M$, the intersection $F_p := F\cap E_p$ is a $k$-dimensional subspace of the vector space $E_p$ and $\pi|_F : F \to M$ defines a rank-$k$ vector bundle, then $\pi|F: F \to M$ is called a \emph{subbundle} of $E$.
12131213
\end{definition}
12141214

1215-
\begin{exercise}[\textit{[homework 1]}]
1215+
\begin{exercise}[\textit{[homework 2]}]
12161216
Let $M$ be a smooth $m$-manifold and $N$ a smooth $n$-manifold.
12171217
Let $F:M\to N$ be an embedding and denote $\widetilde M = F(M)\subset N$.
12181218
\begin{enumerate}[(a)]
@@ -1274,7 +1274,7 @@ \section{Submanifolds}
12741274
Show that $g$ is a smooth embedding and, therefore, that $g(U)$ is a smooth embedded $n$-dimensional submanifold\footnote{$g(U)$ is the the \emph{graph} of $f$!} of $\R^{n+1}$.
12751275
\end{exercise}
12761276

1277-
\begin{exercise}[\textit{[homework 1]}]\label{exe:onsubmanifold}
1277+
\begin{exercise}[\textit{[homework 2]}]\label{exe:onsubmanifold}
12781278
Show that the orthogonal matrices $O(n) := \{ Q\in GL(n) \mid Q^TQ=\id \}$ form a $n(n-1)/2$-dimensional submanifold of the $n^2$-manifold $\mathrm{Mat}(n)$ of $n\times n$-matrices.
12791279

12801280
Show also that

3-vectorfields.tex

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ \section{Vector fields}
2929
\end{equation}
3030
This defines $n$ functions $X^i: U\to\R$, called \emph{component functions of $X$} in the chart.
3131

32-
\begin{exercise}[\textit{[homework 1]}]
32+
\begin{exercise}[\textit{[homework 2]}]
3333
Show that, in the notation above, the restriction of $X$ to $U$ is smooth if and only if its component functions with respect to the chart are smooth.
3434
\end{exercise}
3535

@@ -261,7 +261,7 @@ \section{Lie brackets}
261261
[X,Y] = \left(X^i\frac{\partial Y^j}{\partial x^i} - Y^i\frac{\partial X^j}{y^i}\right)\frac{\partial}{\partial x^j}.
262262
\end{equation}
263263
\end{proposition}
264-
\begin{exercise}[\textit{[homework 1]}]
264+
\begin{exercise}[\textit{[homework 2]}]
265265
Prove the proposition.
266266
\end{exercise}
267267

0 commit comments

Comments
 (0)