Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion workflow/snakemake_rules/export_for_nextstrain.smk
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
import re
import requests
import json
from math import ceil
from workflow.lib.persistent_dict import PersistentDict, NoSuchEntryError

ruleorder: dated_json > finalize
Expand Down Expand Up @@ -80,7 +81,7 @@ rule export_all_regions:
# Memory use scales primarily with the size of the metadata file.
# Compared to other rules, this rule loads metadata as a pandas
# DataFrame instead of a dictionary, so it uses much less memory.
mem_mb=lambda wildcards, input: 5 * int(input.metadata.size / 1024 / 1024)
mem_mb=lambda wildcards, input: ceil(5 * (input.metadata.size / 1024 / 1024))
conda: config["conda_environment"]
shell:
"""
Expand Down
18 changes: 10 additions & 8 deletions workflow/snakemake_rules/main_workflow.smk
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
from math import ceil

rule sanitize_metadata:
input:
metadata=lambda wildcards: _get_path_for_input("metadata", wildcards.origin)
Expand Down Expand Up @@ -803,13 +805,13 @@ rule tree:
# Multiple sequence alignments can use up to 40 times their disk size in
# memory, especially for larger alignments.
# Note that Snakemake >5.10.0 supports input.size_mb to avoid converting from bytes to MB.
mem_mb=lambda wildcards, input: 40 * int(input.size / 1024 / 1024)
mem_mb=lambda wildcards, input: ceil(40 * (input.size / 1024 / 1024))
conda: config["conda_environment"]
shell:
"""
augur tree \
--alignment {input.alignment} \
--tree-builder-args {params.args} \
--tree-builder-args {params.args}' --mem {resources.mem_mb}M' \
{params.exclude_sites} \
--output {output.tree} \
--nthreads {threads} 2>&1 | tee {log}
Expand Down Expand Up @@ -839,7 +841,7 @@ rule refine:
# Multiple sequence alignments can use up to 15 times their disk size in
# memory.
# Note that Snakemake >5.10.0 supports input.size_mb to avoid converting from bytes to MB.
mem_mb=lambda wildcards, input: 15 * int(input.size / 1024 / 1024)
mem_mb=lambda wildcards, input: ceil(15 * (input.size / 1024 / 1024))
params:
root = config["refine"]["root"],
clock_rate = config["refine"]["clock_rate"],
Expand Down Expand Up @@ -893,7 +895,7 @@ rule ancestral:
# Multiple sequence alignments can use up to 15 times their disk size in
# memory.
# Note that Snakemake >5.10.0 supports input.size_mb to avoid converting from bytes to MB.
mem_mb=lambda wildcards, input: 15 * int(input.size / 1024 / 1024)
mem_mb=lambda wildcards, input: ceil(15 * (input.size / 1024 / 1024))
conda: config["conda_environment"]
shell:
"""
Expand Down Expand Up @@ -924,7 +926,7 @@ rule translate:
# Multiple sequence alignments can use up to 15 times their disk size in
# memory.
# Note that Snakemake >5.10.0 supports input.size_mb to avoid converting from bytes to MB.
mem_mb=lambda wildcards, input: 15 * int(input.size / 1024 / 1024)
mem_mb=lambda wildcards, input: ceil(15 * (input.size / 1024 / 1024))
conda: config["conda_environment"]
shell:
"""
Expand Down Expand Up @@ -1055,7 +1057,7 @@ rule clades:
"benchmarks/clades_{build_name}.txt"
resources:
# Memory use scales primarily with size of the node data.
mem_mb=lambda wildcards, input: 3 * int(input.size / 1024 / 1024)
mem_mb=lambda wildcards, input: ceil(3 * (input.size / 1024 / 1024))
conda: config["conda_environment"]
shell:
"""
Expand All @@ -1081,7 +1083,7 @@ rule emerging_lineages:
"benchmarks/emerging_lineages_{build_name}.txt"
resources:
# Memory use scales primarily with size of the node data.
mem_mb=lambda wildcards, input: 3 * int(input.size / 1024 / 1024)
mem_mb=lambda wildcards, input: ceil(3 * (input.size / 1024 / 1024))
conda: config["conda_environment"]
shell:
"""
Expand Down Expand Up @@ -1125,7 +1127,7 @@ rule colors:
# Memory use scales primarily with the size of the metadata file.
# Compared to other rules, this rule loads metadata as a pandas
# DataFrame instead of a dictionary, so it uses much less memory.
mem_mb=lambda wildcards, input: 5 * int(input.metadata.size / 1024 / 1024)
mem_mb=lambda wildcards, input: ceil(5 * (input.metadata.size / 1024 / 1024))
conda: config["conda_environment"]
shell:
"""
Expand Down