Markov chain Monte Carlo (MCMC) sampling using the Independence Metropolis-Hastings algorithm with uniform transition kernel.
Uses the tinyrand RNG to sample at a rate of ~50M samples/sec.
Supports the following distributions:
It is easy to add more univariate distributions by supplying an implementation of a PDF or wrapping one from the excellent statrs crate.
Draw samples from the Gaussian distribution using MCMC.
use std::ops::RangeInclusive;
use tinyrand::Wyrand;
use metromc::gaussian::Gaussian;
use metromc::sampler::{Config, Sampler};
// sample from the Gaussian with µ=0.0 and σ=1.0, in the interval [-5.0, 5.0]
let sampler = Sampler::new(Config {
rand: Wyrand::default(),
dist: Gaussian::new(0.0, 1.0),
range: -5.0..=5.0,
});
// take 1,000 samples after dropping the first 10
for sample in sampler.skip(10).take(1_000) {
println!("{sample:.6}");
}