Skip to content

omarzoghayyer/player-retention-ml

Repository files navigation

Gaming Engagement Predictor

A Python project that trains a multinomial logistic regression model to predict player engagement levels (Low, Medium, High) using the Predict Online Gaming Behavior Dataset.

Installation

  1. Clone the repository

    git clone https://github.com/username/gaming-engagement-predictor.git
    cd gaming-engagement-predictor
  2. Create and activate a virtual environment

    python3 -m venv venv
    source venv/bin/activate    # On Windows: venv\Scripts\activate
  3. Install dependencies

    pip install -r requirements.txt

Usage

Run the main script to preprocess data, train the model, and generate output:

python panda.py
  • Outputs:

    • Console logs of data loading, model training, and evaluation metrics.
    • all_players_with_high_probability.csv: each player’s probability of being in the High engagement bucket.

Data

  • Source: El Kharoua, R. (n.d.). Predict Online Gaming Behavior Dataset [Data set]. Kaggle. Retrieved June 8, 2025.
  • File: Predict_Online_Gaming_Behavior.csv

Dependencies

  • Python 3.13
  • pandas
  • numpy
  • scikit-learn

See requirements.txt for exact versions.

Citation

If you use this work, please cite:

El Kharoua, R. (n.d.). Predict Online Gaming Behavior Dataset [Data set]. Kaggle. Retrieved June 8, 2025.

Harris et al. (2020) for NumPy & McKinney (2010) for pandas & Pedregosa et al. (2011) for scikit-learn.

License

This project is licensed under the MIT License. See LICENSE for details.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages