A Python project that trains a multinomial logistic regression model to predict player engagement levels (Low, Medium, High) using the Predict Online Gaming Behavior Dataset.
-
Clone the repository
git clone https://github.com/username/gaming-engagement-predictor.git cd gaming-engagement-predictor -
Create and activate a virtual environment
python3 -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
-
Install dependencies
pip install -r requirements.txt
Run the main script to preprocess data, train the model, and generate output:
python panda.py-
Outputs:
- Console logs of data loading, model training, and evaluation metrics.
all_players_with_high_probability.csv: each player’s probability of being in the High engagement bucket.
- Source: El Kharoua, R. (n.d.). Predict Online Gaming Behavior Dataset [Data set]. Kaggle. Retrieved June 8, 2025.
- File:
Predict_Online_Gaming_Behavior.csv
- Python 3.13
- pandas
- numpy
- scikit-learn
See requirements.txt for exact versions.
If you use this work, please cite:
El Kharoua, R. (n.d.). Predict Online Gaming Behavior Dataset [Data set]. Kaggle. Retrieved June 8, 2025.
Harris et al. (2020) for NumPy & McKinney (2010) for pandas & Pedregosa et al. (2011) for scikit-learn.
This project is licensed under the MIT License. See LICENSE for details.