-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Enhance] Support 2D&3D Optical Flow Training (#2631)
- Loading branch information
Showing
6 changed files
with
314 additions
and
45 deletions.
There are no files selected for viewing
146 changes: 146 additions & 0 deletions
146
configs/recognition/slowonly/slowonly_r50_8xb16-16x4x1-256e_kinetics400-flow.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,146 @@ | ||
_base_ = '../../_base_/default_runtime.py' | ||
|
||
model = dict( | ||
type='Recognizer3D', | ||
backbone=dict( | ||
type='ResNet3dSlowOnly', | ||
depth=50, | ||
pretrained=None, | ||
lateral=False, | ||
in_channels=2, | ||
conv1_kernel=(1, 7, 7), | ||
conv1_stride_t=1, | ||
pool1_stride_t=1, | ||
inflate=(0, 0, 1, 1), | ||
norm_eval=False), | ||
cls_head=dict( | ||
type='I3DHead', | ||
in_channels=2048, | ||
num_classes=400, | ||
spatial_type='avg', | ||
dropout_ratio=0.5, | ||
average_clips='prob'), | ||
data_preprocessor=dict( | ||
type='ActionDataPreprocessor', | ||
mean=[128, 128], | ||
std=[128, 128], | ||
format_shape='NCTHW')) | ||
|
||
# dataset settings | ||
dataset_type = 'RawframeDataset' | ||
data_root = 'data/kinetics400/rawframes_train' | ||
data_root_val = 'data/kinetics400/rawframes_val' | ||
ann_file_train = 'data/kinetics400/kinetics400_train_list_flow.txt' | ||
ann_file_val = 'data/kinetics400/kinetics400_val_list_flow.txt' | ||
ann_file_test = 'data/kinetics400/kinetics400_val_list_flow.txt' | ||
file_client_args = dict(io_backend='disk') | ||
train_pipeline = [ | ||
dict(type='SampleFrames', clip_len=16, frame_interval=4, num_clips=1), | ||
dict(type='RawFrameDecode', **file_client_args), | ||
dict(type='Resize', scale=(-1, 256)), | ||
dict(type='RandomResizedCrop'), | ||
dict(type='Resize', scale=(224, 224), keep_ratio=False), | ||
dict(type='Flip', flip_ratio=0.5), | ||
dict(type='FormatShape', input_format='NCTHW'), | ||
dict(type='PackActionInputs') | ||
] | ||
|
||
val_pipeline = [ | ||
dict( | ||
type='SampleFrames', | ||
clip_len=16, | ||
frame_interval=4, | ||
num_clips=2, | ||
test_mode=True), | ||
dict(type='RawFrameDecode', **file_client_args), | ||
dict(type='Resize', scale=(-1, 256)), | ||
dict(type='CenterCrop', crop_size=224), | ||
dict(type='FormatShape', input_format='NCTHW'), | ||
dict(type='PackActionInputs') | ||
] | ||
|
||
test_pipeline = [ | ||
dict( | ||
type='SampleFrames', | ||
clip_len=16, | ||
frame_interval=4, | ||
num_clips=10, | ||
test_mode=True), | ||
dict(type='RawFrameDecode', **file_client_args), | ||
dict(type='Resize', scale=(-1, 256)), | ||
dict(type='ThreeCrop', crop_size=256), | ||
dict(type='FormatShape', input_format='NCTHW'), | ||
dict(type='PackActionInputs') | ||
] | ||
|
||
train_dataloader = dict( | ||
batch_size=16, | ||
num_workers=8, | ||
persistent_workers=True, | ||
sampler=dict(type='DefaultSampler', shuffle=True), | ||
dataset=dict( | ||
type=dataset_type, | ||
ann_file=ann_file_train, | ||
filename_tmpl='{}_{:05d}.jpg', | ||
modality='Flow', | ||
data_prefix=dict(img=data_root), | ||
pipeline=train_pipeline)) | ||
val_dataloader = dict( | ||
batch_size=16, | ||
num_workers=8, | ||
persistent_workers=True, | ||
sampler=dict(type='DefaultSampler', shuffle=False), | ||
dataset=dict( | ||
type=dataset_type, | ||
ann_file=ann_file_val, | ||
filename_tmpl='{}_{:05d}.jpg', | ||
modality='Flow', | ||
data_prefix=dict(img=data_root_val), | ||
pipeline=val_pipeline, | ||
test_mode=True)) | ||
test_dataloader = dict( | ||
batch_size=1, | ||
num_workers=8, | ||
persistent_workers=True, | ||
sampler=dict(type='DefaultSampler', shuffle=False), | ||
dataset=dict( | ||
type=dataset_type, | ||
ann_file=ann_file_val, | ||
filename_tmpl='{}_{:05d}.jpg', | ||
modality='Flow', | ||
data_prefix=dict(img=data_root_val), | ||
pipeline=test_pipeline, | ||
test_mode=True)) | ||
|
||
val_evaluator = dict(type='AccMetric') | ||
test_evaluator = val_evaluator | ||
|
||
train_cfg = dict( | ||
type='EpochBasedTrainLoop', max_epochs=256, val_begin=1, val_interval=8) | ||
val_cfg = dict(type='ValLoop') | ||
test_cfg = dict(type='TestLoop') | ||
|
||
# learning policy | ||
param_scheduler = [ | ||
dict(type='LinearLR', start_factor=0.1, by_epoch=True, begin=0, end=34), | ||
dict( | ||
type='CosineAnnealingLR', | ||
T_max=222, | ||
eta_min=0, | ||
by_epoch=True, | ||
begin=34, | ||
end=256) | ||
] | ||
|
||
optim_wrapper = dict( | ||
optimizer=dict(type='SGD', lr=0.2, momentum=0.9, weight_decay=1e-4), | ||
clip_grad=dict(max_norm=40, norm_type=2)) | ||
|
||
# runtime settings | ||
default_hooks = dict(checkpoint=dict(interval=8, max_keep_ckpts=3)) | ||
|
||
# Default setting for scaling LR automatically | ||
# - `enable` means enable scaling LR automatically | ||
# or not by default. | ||
# - `base_batch_size` = (8 GPUs) x (16 samples per GPU). | ||
auto_scale_lr = dict(enable=False, base_batch_size=128) |
141 changes: 141 additions & 0 deletions
141
configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32_5x1x3-110e_kinetics400-flow.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
_base_ = '../../_base_/default_runtime.py' | ||
|
||
clip_len = 5 | ||
|
||
model = dict( | ||
type='Recognizer2D', | ||
backbone=dict( | ||
type='ResNet', | ||
pretrained='https://download.pytorch.org/models/resnet50-11ad3fa6.pth', | ||
depth=50, | ||
in_channels=2 * clip_len, # ``in_channels`` should be 2 * clip_len | ||
norm_eval=False), | ||
cls_head=dict( | ||
type='TSNHead', | ||
num_classes=400, | ||
in_channels=2048, | ||
spatial_type='avg', | ||
consensus=dict(type='AvgConsensus', dim=1), | ||
dropout_ratio=0.4, | ||
init_std=0.01, | ||
average_clips='prob'), | ||
data_preprocessor=dict( | ||
type='ActionDataPreprocessor', | ||
mean=[128, 128] * clip_len, # ``in_channels`` should be 2 * clip_len | ||
std=[128, 128] * clip_len, # ``in_channels`` should be 2 * clip_len | ||
format_shape='NCHW')) | ||
|
||
# dataset settings | ||
dataset_type = 'RawframeDataset' | ||
data_root = 'data/kinetics400/rawframes_train' | ||
data_root_val = 'data/kinetics400/rawframes_val' | ||
ann_file_train = 'data/kinetics400/kinetics400_train_list_flow.txt' | ||
ann_file_val = 'data/kinetics400/kinetics400_val_list_flow.txt' | ||
ann_file_test = 'data/kinetics400/kinetics400_val_list_flow.txt' | ||
file_client_args = dict(io_backend='disk') | ||
train_pipeline = [ | ||
dict( | ||
type='SampleFrames', clip_len=clip_len, frame_interval=1, num_clips=3), | ||
dict(type='RawFrameDecode', **file_client_args), | ||
dict(type='Resize', scale=(-1, 256)), | ||
dict(type='RandomResizedCrop'), | ||
dict(type='Resize', scale=(224, 224), keep_ratio=False), | ||
dict(type='Flip', flip_ratio=0.5), | ||
dict(type='FormatShape', input_format='NCHW'), | ||
dict(type='PackActionInputs') | ||
] | ||
val_pipeline = [ | ||
dict( | ||
type='SampleFrames', | ||
clip_len=clip_len, | ||
frame_interval=1, | ||
num_clips=3, | ||
test_mode=True), | ||
dict(type='RawFrameDecode', **file_client_args), | ||
dict(type='Resize', scale=(-1, 256)), | ||
dict(type='CenterCrop', crop_size=224), | ||
dict(type='FormatShape', input_format='NCHW'), | ||
dict(type='PackActionInputs') | ||
] | ||
test_pipeline = [ | ||
dict( | ||
type='SampleFrames', | ||
clip_len=clip_len, | ||
frame_interval=1, | ||
num_clips=25, | ||
test_mode=True), | ||
dict(type='RawFrameDecode'), | ||
dict(type='Resize', scale=(-1, 256)), | ||
dict(type='TenCrop', crop_size=224), | ||
dict(type='FormatShape', input_format='NCHW'), | ||
dict(type='PackActionInputs') | ||
] | ||
|
||
train_dataloader = dict( | ||
batch_size=32, | ||
num_workers=8, | ||
persistent_workers=True, | ||
sampler=dict(type='DefaultSampler', shuffle=True), | ||
dataset=dict( | ||
type=dataset_type, | ||
ann_file=ann_file_train, | ||
filename_tmpl='{}_{:05d}.jpg', | ||
modality='Flow', | ||
data_prefix=dict(img=data_root), | ||
pipeline=train_pipeline)) | ||
val_dataloader = dict( | ||
batch_size=32, | ||
num_workers=8, | ||
persistent_workers=True, | ||
sampler=dict(type='DefaultSampler', shuffle=False), | ||
dataset=dict( | ||
type=dataset_type, | ||
ann_file=ann_file_val, | ||
filename_tmpl='{}_{:05d}.jpg', | ||
modality='Flow', | ||
data_prefix=dict(img=data_root_val), | ||
pipeline=val_pipeline, | ||
test_mode=True)) | ||
test_dataloader = dict( | ||
batch_size=1, | ||
num_workers=8, | ||
persistent_workers=True, | ||
sampler=dict(type='DefaultSampler', shuffle=False), | ||
dataset=dict( | ||
type=dataset_type, | ||
ann_file=ann_file_val, | ||
filename_tmpl='{}_{:05d}.jpg', | ||
modality='Flow', | ||
data_prefix=dict(img=data_root_val), | ||
pipeline=test_pipeline, | ||
test_mode=True)) | ||
|
||
val_evaluator = dict(type='AccMetric') | ||
test_evaluator = val_evaluator | ||
|
||
train_cfg = dict( | ||
type='EpochBasedTrainLoop', max_epochs=110, val_begin=1, val_interval=5) | ||
val_cfg = dict(type='ValLoop') | ||
test_cfg = dict(type='TestLoop') | ||
|
||
optim_wrapper = dict( | ||
optimizer=dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0001), | ||
clip_grad=dict(max_norm=40, norm_type=2)) | ||
|
||
param_scheduler = [ | ||
dict( | ||
type='MultiStepLR', | ||
begin=0, | ||
end=110, | ||
by_epoch=True, | ||
milestones=[70, 100], | ||
gamma=0.1) | ||
] | ||
|
||
default_hooks = dict(checkpoint=dict(interval=5, max_keep_ckpts=3)) | ||
|
||
# Default setting for scaling LR automatically | ||
# - `enable` means enable scaling LR automatically | ||
# or not by default. | ||
# - `base_batch_size` = (8 GPUs) x (32 samples per GPU). | ||
auto_scale_lr = dict(enable=False, base_batch_size=256) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.