-
Notifications
You must be signed in to change notification settings - Fork 146
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
feature(rjy): add mamujoco env and related configs #153
Open
nighood
wants to merge
8
commits into
opendilab:main
Choose a base branch
from
nighood:rjy-ma-mujoco
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+2,184
−771
Open
Changes from 1 commit
Commits
Show all changes
8 commits
Select commit
Hold shift + click to select a range
f1528d4
env(rjy): add mamujoco for LightZero
de89e54
fix(rjy): fix mamujoco and add test
933f673
feature(rjy): add independent sez pipeline(\train)
1e04545
algo(rjy): fix forward_learn and game_buffer
c54c0a5
algo(rjy): add pipeline of sez ma (train+eval)
f888f6f
fix(rjy): fix config
27420d4
polish(rjy): polish comments of mamujoco
fc84583
fix(rjy): Divide the handling of single/multi-agentin the code into …
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
feature(rjy): add independent sez pipeline(\train)
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -3,6 +3,8 @@ | |
import numpy as np | ||
import torch | ||
from ding.utils import BUFFER_REGISTRY | ||
from ding.utils.data import default_collate, default_decollate | ||
from ding.torch_utils import to_tensor, to_device, to_dtype, to_ndarray | ||
|
||
from lzero.mcts.tree_search.mcts_ctree_sampled import SampledEfficientZeroMCTSCtree as MCTSCtree | ||
from lzero.mcts.tree_search.mcts_ptree_sampled import SampledEfficientZeroMCTSPtree as MCTSPtree | ||
|
@@ -140,7 +142,9 @@ def _make_batch(self, batch_size: int, reanalyze_ratio: float) -> Tuple[Any]: | |
# sampled related core code | ||
# ============================================================== | ||
actions_tmp = game.action_segment[pos_in_game_segment:pos_in_game_segment + | ||
self._cfg.num_unroll_steps].tolist() | ||
self._cfg.num_unroll_steps] | ||
if not isinstance(actions_tmp, list): | ||
actions_tmp = actions_tmp.tolist() | ||
|
||
# NOTE: self._cfg.num_unroll_steps + 1 | ||
root_sampled_actions_tmp = game.root_sampled_actions[pos_in_game_segment:pos_in_game_segment + | ||
|
@@ -152,14 +156,25 @@ def _make_batch(self, batch_size: int, reanalyze_ratio: float) -> Tuple[Any]: | |
|
||
# pad random action | ||
if self._cfg.model.continuous_action_space: | ||
actions_tmp += [ | ||
np.random.randn(self._cfg.model.action_space_size) | ||
if self._multi_agent: | ||
actions_tmp += [ | ||
np.random.randn(self._cfg.model.agent_num, self._cfg.model.action_space_size) | ||
for _ in range(self._cfg.num_unroll_steps - len(actions_tmp)) | ||
] | ||
root_sampled_actions_tmp += [ | ||
root_sampled_actions_tmp += [ | ||
np.random.rand(self._cfg.model.agent_num, self._cfg.model.num_of_sampled_actions, self._cfg.model.action_space_size) | ||
for _ in range(self._cfg.num_unroll_steps + 1 - len(root_sampled_actions_tmp)) | ||
] | ||
else: | ||
actions_tmp += [ | ||
np.random.randn(self._cfg.model.action_space_size) | ||
for _ in range(self._cfg.num_unroll_steps - len(actions_tmp)) | ||
] | ||
root_sampled_actions_tmp += [ | ||
np.random.rand(self._cfg.model.num_of_sampled_actions, self._cfg.model.action_space_size) | ||
for _ in range(self._cfg.num_unroll_steps + 1 - len(root_sampled_actions_tmp)) | ||
] | ||
|
||
else: | ||
# generate random `padded actions_tmp` | ||
actions_tmp += generate_random_actions_discrete( | ||
|
@@ -192,7 +207,8 @@ def _make_batch(self, batch_size: int, reanalyze_ratio: float) -> Tuple[Any]: | |
mask_list.append(mask_tmp) | ||
|
||
# formalize the input observations | ||
obs_list = prepare_observation(obs_list, self._cfg.model.model_type) | ||
if not self._multi_agent: | ||
obs_list = prepare_observation(obs_list, self._cfg.model.model_type) | ||
# ============================================================== | ||
# sampled related core code | ||
# ============================================================== | ||
|
@@ -202,7 +218,7 @@ def _make_batch(self, batch_size: int, reanalyze_ratio: float) -> Tuple[Any]: | |
] | ||
|
||
for i in range(len(current_batch)): | ||
current_batch[i] = np.asarray(current_batch[i]) | ||
current_batch[i] = to_ndarray(current_batch[i]) | ||
|
||
total_transitions = self.get_num_of_transitions() | ||
|
||
|
@@ -272,16 +288,20 @@ def _compute_target_reward_value(self, reward_value_context: List[Any], model: A | |
|
||
batch_target_values, batch_value_prefixs = [], [] | ||
with torch.no_grad(): | ||
value_obs_list = prepare_observation(value_obs_list, self._cfg.model.model_type) | ||
if not self._multi_agent: | ||
value_obs_list = prepare_observation(value_obs_list, self._cfg.model.model_type) | ||
# split a full batch into slices of mini_infer_size: to save the GPU memory for more GPU actors | ||
slices = int(np.ceil(transition_batch_size / self._cfg.mini_infer_size)) | ||
network_output = [] | ||
for i in range(slices): | ||
beg_index = self._cfg.mini_infer_size * i | ||
end_index = self._cfg.mini_infer_size * (i + 1) | ||
m_obs = torch.from_numpy(value_obs_list[beg_index:end_index]).to(self._cfg.device).float() | ||
m_obs = to_dtype(to_device(to_tensor(value_obs_list[beg_index:end_index]), self._cfg.device), torch.float) | ||
|
||
# calculate the target value | ||
m_obs = default_collate(m_obs) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 类似上面的问题 |
||
if self._multi_agent: | ||
m_obs = m_obs[0] | ||
m_output = model.initial_inference(m_obs) | ||
|
||
# TODO(pu) | ||
|
@@ -355,12 +375,20 @@ def _compute_target_reward_value(self, reward_value_context: List[Any], model: A | |
] | ||
) | ||
else: | ||
value_list = value_list.reshape(-1) * ( | ||
np.array([self._cfg.discount_factor for _ in range(transition_batch_size)]) ** td_steps_list | ||
) | ||
if self._multi_agent: | ||
value_list = value_list.reshape(transition_batch_size, self._cfg.model.agent_num) | ||
factor = np.array([self._cfg.discount_factor for _ in range(transition_batch_size)]) ** td_steps_list | ||
value_list = value_list * factor.reshape(transition_batch_size, 1).astype(np.float32) | ||
else: | ||
value_list = value_list.reshape(-1) * ( | ||
np.array([self._cfg.discount_factor for _ in range(transition_batch_size)]) ** td_steps_list | ||
) | ||
|
||
value_list = value_list * np.array(value_mask) | ||
value_list = value_list.tolist() | ||
if self._multi_agent: | ||
value_list = value_list * np.array(value_mask)[:, np.newaxis] | ||
else: | ||
value_list = value_list * np.array(value_mask) | ||
value_list = value_list.tolist() | ||
|
||
horizon_id, value_index = 0, 0 | ||
for game_segment_len_non_re, reward_list, state_index, to_play_list in zip(game_segment_lens, rewards_list, | ||
|
@@ -399,16 +427,16 @@ def _compute_target_reward_value(self, reward_value_context: List[Any], model: A | |
] # * config.discount_factor ** (current_index - base_index) | ||
target_value_prefixs.append(value_prefix) | ||
else: | ||
target_values.append(0) | ||
target_values.append(np.zeros_like(value_list[0])) | ||
target_value_prefixs.append(value_prefix) | ||
|
||
value_index += 1 | ||
|
||
batch_value_prefixs.append(target_value_prefixs) | ||
batch_target_values.append(target_values) | ||
|
||
batch_value_prefixs = np.asarray(batch_value_prefixs, dtype=object) | ||
batch_target_values = np.asarray(batch_target_values, dtype=object) | ||
batch_value_prefixs = np.asarray(batch_value_prefixs, dtype=np.float32) | ||
batch_target_values = np.asarray(batch_target_values, dtype=np.float32) | ||
|
||
return batch_value_prefixs, batch_target_values | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -5,6 +5,7 @@ | |
from easydict import EasyDict | ||
|
||
from ding.utils.compression_helper import jpeg_data_decompressor | ||
from ding.torch_utils import to_ndarray | ||
|
||
|
||
class GameSegment: | ||
|
@@ -96,20 +97,31 @@ def get_unroll_obs(self, timestep: int, num_unroll_steps: int = 0, padding: bool | |
if padding: | ||
pad_len = self.frame_stack_num + num_unroll_steps - len(stacked_obs) | ||
if pad_len > 0: | ||
pad_frames = np.array([stacked_obs[-1] for _ in range(pad_len)]) | ||
stacked_obs = np.concatenate((stacked_obs, pad_frames)) | ||
pad_frames = [stacked_obs[-1] for _ in range(pad_len)] | ||
stacked_obs += pad_frames | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 单/多智能体运行都是正常的吗?测试一下mamujoco hopper和lunarlander-cont |
||
if self.transform2string: | ||
stacked_obs = [jpeg_data_decompressor(obs, self.gray_scale) for obs in stacked_obs] | ||
return stacked_obs | ||
|
||
def _zero_obs(self, input_data): | ||
if isinstance(input_data, dict): | ||
# Process dict | ||
return {k: self._zero_obs(v) for k, v in input_data.items()} | ||
elif isinstance(input_data, (list, np.ndarray)): | ||
# Process arrays or lists | ||
return np.zeros_like(input_data) | ||
else: | ||
# Process other types (e.g. numbers, strings, etc.) | ||
return input_data | ||
|
||
def zero_obs(self) -> List: | ||
""" | ||
Overview: | ||
Return an observation frame filled with zeros. | ||
Returns: | ||
ndarray: An array filled with zeros. | ||
""" | ||
return [np.zeros(self.zero_obs_shape, dtype=np.float32) for _ in range(self.frame_stack_num)] | ||
return [self._zero_obs(self.obs_segment[0]) for _ in range(self.frame_stack_num)] | ||
|
||
def get_obs(self) -> List: | ||
""" | ||
|
@@ -212,9 +224,9 @@ def store_search_stats( | |
Overview: | ||
store the visit count distributions and value of the root node after MCTS. | ||
""" | ||
sum_visits = sum(visit_counts) | ||
sum_visits = np.sum(visit_counts, axis=-1) | ||
if idx is None: | ||
self.child_visit_segment.append([visit_count / sum_visits for visit_count in visit_counts]) | ||
self.child_visit_segment.append([visit_count / sum_visits[i] for i,visit_count in enumerate(visit_counts)]) | ||
self.root_value_segment.append(root_value) | ||
if self.sampled_algo: | ||
self.root_sampled_actions.append(root_sampled_actions) | ||
|
@@ -272,26 +284,26 @@ def game_segment_to_array(self) -> None: | |
For environments with a variable action space, such as board games, the elements in `child_visit_segment` may have | ||
different lengths. In such scenarios, it is necessary to use the object data type for `self.child_visit_segment`. | ||
""" | ||
self.obs_segment = np.array(self.obs_segment) | ||
self.action_segment = np.array(self.action_segment) | ||
self.reward_segment = np.array(self.reward_segment) | ||
self.obs_segment = to_ndarray(self.obs_segment) | ||
self.action_segment = to_ndarray(self.action_segment) | ||
self.reward_segment = to_ndarray(self.reward_segment) | ||
|
||
# Check if all elements in self.child_visit_segment have the same length | ||
if all(len(x) == len(self.child_visit_segment[0]) for x in self.child_visit_segment): | ||
self.child_visit_segment = np.array(self.child_visit_segment) | ||
self.child_visit_segment = to_ndarray(self.child_visit_segment) | ||
else: | ||
# In the case of environments with a variable action space, such as board games, | ||
# the elements in child_visit_segment may have different lengths. | ||
# In such scenarios, it is necessary to use the object data type. | ||
self.child_visit_segment = np.array(self.child_visit_segment, dtype=object) | ||
self.child_visit_segment = to_ndarray(self.child_visit_segment, dtype=object) | ||
|
||
self.root_value_segment = np.array(self.root_value_segment) | ||
self.improved_policy_probs = np.array(self.improved_policy_probs) | ||
self.root_value_segment = to_ndarray(self.root_value_segment) | ||
self.improved_policy_probs = to_ndarray(self.improved_policy_probs) | ||
|
||
self.action_mask_segment = np.array(self.action_mask_segment) | ||
self.to_play_segment = np.array(self.to_play_segment) | ||
self.action_mask_segment = to_ndarray(self.action_mask_segment) | ||
self.to_play_segment = to_ndarray(self.to_play_segment) | ||
if self.use_ture_chance_label_in_chance_encoder: | ||
self.chance_segment = np.array(self.chance_segment) | ||
self.chance_segment = to_ndarray(self.chance_segment) | ||
|
||
def reset(self, init_observations: np.ndarray) -> None: | ||
""" | ||
|
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
为什么要这样修改呢?之前的方法在多智能体下面会有报错吗?你现在的写法是在单/多智能体下都能与预期一致吗