Tensorflow extension for openml-python API. This library provides a simple way to run your Tensorflow models on OpenML tasks.
pip install openml-tensorflow
PyPi link https://pypi.org/project/openml-tensorflow/
Import openML libraries
import openml
import openml_tensorflow
from tensorflow.keras import layers, models
Create and compile a tensorflow model
model = models.Sequential()
model.add(layers.Conv2D(128, (3, 3), activation='relu', input_shape=IMG_SHAPE))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(84, activation='relu'))
model.add(layers.Dense(19, activation='softmax'))
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['AUC'])
# We will compile using the Adam optimizer while targeting accuracy.
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['AUC'])
Download the task from openML and run the model on task.
task = openml.tasks.get_task(362071)
run = openml.runs.run_model_on_task(model, task, avoid_duplicate_runs=False)
run.publish()
print('URL for run: %s/run/%d' % (openml.config.server, run.run_id))
Note: The input layer of the network should be compatible with OpenML data output shape. Please check examples for more information.
Additionally, if you want to publish the run with onnx file, then you must call openml_tensorflow.add_onnx_to_run()
immediately before run.publish()
.
run = openml_tensorflow.add_onnx_to_run(run)
The docker container has the latest version of OpenML-Tensorflow downloaded and pre-installed. It can be used to run TensorFlow Deep Learning analysis on OpenML datasets. See docker.
This library is currently under development, please report any bugs or feature reuest in issues section.