The OCI OpenAI Python library provides secure and convenient access to the OpenAI-compatible REST API hosted by OCI Generative AI Service and OCI Data Science Model Deployment Service.
- oci-openai
Important!
Note that this package, as well as API keys package described below, only supports OpenAI, xAi Grok and Meta LLama models on OCI Generative AI.
Before you start using this package, determine if this is the right option for you.
If you are looking for a seamless way to port your code from an OpenAI compatible endpoint to OCI Generative AI endpoint, and you are currently using OpenAI-style API keys, you might want to use OCI Generative AI API Keys instead.
With OCI Generative AI API Keys, use the native openai SDK like before. Just update the base_url, create API keys in your OCI console, insure the policy granting the key access to generative AI services is present and you are good to go.
- Create an API key in Console: Generative AI -> API Keys
- Create a security policy: Identity & Security -> Policies
To authorize a specific API Key
allow any-user to use generative-ai-family in compartment <compartment-name> where ALL { request.principal.type='generativeaiapikey', request.principal.id='ocid1.generativeaiapikey.oc1.us-chicago-1....' }
To authorize any API Key
allow any-user to use generative-ai-family in compartment <compartment-name> where ALL { request.principal.type='generativeaiapikey' }
- Update the
base_urlin your code:
from openai import OpenAI
import os
API_KEY=os.getenv("OPENAI_API_KEY")
print(API_KEY)
client = OpenAI(
api_key=API_KEY,
base_url="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com/20231130/actions/v1"
)
# Responses API
response = client.responses.create(
model="openai.gpt-oss-120b",
# model="xai.grok-3",
# meta models are not supported with the Responses API
input="Write a one-sentence bedtime story about a unicorn."
)
print(response)
# Completion API
response = client.chat.completions.create(
# model="openai.gpt-oss-120b",
# model="meta.llama-3.3-70b-instruct",
model="xai.grok-3",
messages=[{
"role": "user",
"content": "Write a one-sentence bedtime story about a unicorn."
}
]
)
print(response)API Keys offer a seamless transition from code using the openai SDK, and allow usage in 3rd party code or services that don't offer an override of the http client.
However, if authentication at the user, compute instance, resource or workload level (OKE pods) is preferred, this package is for you.
It offers the same compatibility with the openai SDK, but requires patching the http client. See the following instruction on how to use it.
pip install oci-openaiNotes:
- Cohere models do not support OpenAI-compatible API
from oci_openai import OciOpenAI, OciSessionAuth
client = OciOpenAI(
base_url="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com/20231130/actions/v1",
auth=OciSessionAuth(profile_name="<profile name>"),
compartment_id="<compartment ocid>",
)
completion = client.chat.completions.create(
model="<model name>",
messages=[
{
"role": "user",
"content": "How do I output all files in a directory using Python?",
},
],
)
print(completion.model_dump_json())from oci_openai import AsyncOciOpenAI, OciSessionAuth
client = AsyncOciOpenAI(
auth=OciSessionAuth(profile_name="<profile name>"),
base_url="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com/20231130/actions/v1",
compartment_id="<compartment ocid>",
)
completion = await client.chat.completions.create(
model="<model name>",
messages=[
{
"role": "user",
"content": "How do I output all files in a directory using Python?",
},
],
)
print(completion.model_dump_json())import httpx
from openai import OpenAI
from oci_openai import OciUserPrincipalAuth
# Example for OCI Generative AI endpoint
client = OpenAI(
api_key="OCI",
base_url="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com/20231130/actions/v1",
http_client=httpx.Client(
auth=OciSessionAuth(profile_name="<profile name>"),
headers={"CompartmentId": "<compartment ocid>"}
),
)
completion = client.chat.completions.create(
model="<model name>",
messages=[
{
"role": "user",
"content": "How do I output all files in a directory using Python?",
},
],
)
print(completion.model_dump_json())from langchain_openai import ChatOpenAI
import httpx
from oci_openai import OciUserPrincipalAuth
llm = ChatOpenAI(
model="<model name>", # for example "xai.grok-4-fast-reasoning"
api_key="OCI",
base_url="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com/20231130/actions/v1",
http_client=httpx.Client(
auth=OciUserPrincipalAuth(profile_name="<profile name>"),
headers={"CompartmentId": "<compartment ocid>"}
),
# use_responses_api=True
# stream_usage=True,
# temperature=None,
# max_tokens=None,
# timeout=None,
# reasoning_effort="low",
# max_retries=2,
# other params...
)
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
print(ai_msg)from oci_openai import OciOpenAI, OciSessionAuth
client = OciOpenAI(
base_url="https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<OCID>/predict/v1",
auth=OciSessionAuth(profile_name="<profile name>")
)
response = client.chat.completions.create(
model="<model-name>",
messages=[
{
"role": "user",
"content": "Explain how to list all files in a directory using Python.",
},
],
)
print(response.model_dump_json())from oci_openai import AsyncOciOpenAI, OciSessionAuth
# Example for OCI Data Science Model Deployment endpoint
client = AsyncOciOpenAI(
base_url="https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<OCID>/predict/v1",
auth=OciSessionAuth(profile_name="<profile name>")
)
response = await client.chat.completions.create(
model="<model-name>",
messages=[
{
"role": "user",
"content": "Explain how to list all files in a directory using Python.",
},
],
)
print(response.model_dump_json())import httpx
from openai import OpenAI
from oci_openai import OciSessionAuth
# Example for OCI Data Science Model Deployment endpoint
client = OpenAI(
api_key="OCI",
base_url="https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<OCID>/predict/v1",
http_client=httpx.Client(auth=OciSessionAuth()),
)
response = client.chat.completions.create(
model="<model-name>",
messages=[
{
"role": "user",
"content": "Explain how to list all files in a directory using Python.",
},
],
)
print(response.model_dump_json())The library supports multiple OCI authentication methods (signers). Choose the one that matches your runtime environment and security posture.
Supported signers
OciSessionAuth— Uses an OCI session token from your local OCI CLI profile.OciResourcePrincipalAuth— Uses Resource Principal auth.OciInstancePrincipalAuth— Uses Instance Principal auth. Best for OCI Compute instances with dynamic group policies.OciUserPrincipalAuth— Uses an OCI user API key. Suitable for service accounts/automation where API keys are managed securely.
Minimal examples of constructing each auth type:
from oci_openai import (
OciOpenAI,
OciSessionAuth,
OciResourcePrincipalAuth,
OciInstancePrincipalAuth,
OciUserPrincipalAuth,
)
# 1) Session (local dev; uses ~/.oci/config + session token)
session_auth = OciSessionAuth(profile_name="DEFAULT")
# 2) Resource Principal (OCI services with RP)
rp_auth = OciResourcePrincipalAuth()
# 3) Instance Principal (OCI Compute)
ip_auth = OciInstancePrincipalAuth()
# 4) User Principal (API key in ~/.oci/config)
up_auth = OciUserPrincipalAuth(profile_name="DEFAULT")This project welcomes contributions from the community. Before submitting a pull request, please review our contribution guide.
Please consult the security guide for our responsible security vulnerability disclosure process.
Copyright (c) 2025 Oracle and/or its affiliates.
Released under the Universal Permissive License v1.0 as shown at https://oss.oracle.com/licenses/upl/