-
Notifications
You must be signed in to change notification settings - Fork 132
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Cartan eilenberg resolutions #4248
Changes from all commits
1d039b7
ab26ebf
abe02bb
e46bfb8
b2a05fc
ebbe2b3
1e804fc
6727736
ea0ad25
d5eaa1e
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,212 @@ | ||
#= Cartan Eilenberg resolutions of 1-dimensional complexes | ||
# | ||
# Suppose | ||
# | ||
# 0 ← C₀ ← C₁ ← C₂ ← … | ||
# | ||
# is a bounded below complex. We compute a double complex | ||
# | ||
# 0 0 0 | ||
# ↑ ↑ ↑ | ||
# 0 ← P₀₀ ← P₀₁ ← P₀₂ ← … | ||
# ↑ ↑ ↑ | ||
# 0 ← P₁₀ ← P₁₁ ← P₁₂ ← … | ||
# ↑ ↑ ↑ | ||
# 0 ← P₂₀ ← P₂₁ ← P₂₂ ← … | ||
# ↑ ↑ ↑ | ||
# ⋮ ⋮ ⋮ | ||
# | ||
# whose total complex is quasi-isomorphic to C via some augmentation map | ||
# | ||
# ε = (εᵢ : P₀ᵢ → Cᵢ)ᵢ | ||
# | ||
# The challenge is that if we were only computing resolutions of the Cᵢ's | ||
# and lifting the maps, then the rows of the resulting diagrams would | ||
# not necessarily form complexes. To accomplish that, we split the original | ||
# complex into short exact sequences | ||
# | ||
# 0 ← Bᵢ ← Cᵢ ← Zᵢ ← 0 | ||
# | ||
# and apply the Horse shoe lemma to these. Together with the induced maps | ||
# from Bᵢ ↪ Zᵢ₋₁ we get the desired double complex. | ||
# | ||
# If the original complex C is known to be exact, then there is no need | ||
# to compute the resolutions of both Bᵢ and Zᵢ and we can shorten the procedure. | ||
=# | ||
### Production of the chains | ||
struct CEChainFactory{ChainType} <: HyperComplexChainFactory{ChainType} | ||
c::AbsHyperComplex | ||
is_exact::Bool | ||
kernel_resolutions::Dict{Int, <:AbsHyperComplex} # the kernels of Cᵢ → Cᵢ₋₁ | ||
boundary_resolutions::Dict{Int, <:AbsHyperComplex} # the boundaries of Cᵢ₊₁ → Cᵢ | ||
induced_maps::Dict{Int, <:AbsHyperComplexMorphism} # the induced maps from the free | ||
# resolutions of the boundary and kernel | ||
|
||
function CEChainFactory(c::AbsHyperComplex; is_exact::Bool=false) | ||
@assert dim(c) == 1 "complex must be 1-dimensional" | ||
#@assert has_lower_bound(c, 1) "complex must be bounded from below" | ||
return new{chain_type(c)}(c, is_exact, Dict{Int, AbsHyperComplex}(), Dict{Int, AbsHyperComplex}(), Dict{Int, AbsHyperComplexMorphism}()) | ||
end | ||
end | ||
|
||
function kernel_resolution(fac::CEChainFactory, i::Int) | ||
if !haskey(fac.kernel_resolutions, i) | ||
Z, _ = kernel(fac.c, i) | ||
fac.kernel_resolutions[i] = free_resolution(SimpleFreeResolution, Z)[1] | ||
end | ||
return fac.kernel_resolutions[i] | ||
end | ||
|
||
function boundary_resolution(fac::CEChainFactory, i::Int) | ||
if !haskey(fac.boundary_resolutions, i) | ||
Z, _ = boundary(fac.c, i) | ||
fac.boundary_resolutions[i] = free_resolution(SimpleFreeResolution, Z)[1] | ||
end | ||
return fac.boundary_resolutions[i] | ||
end | ||
|
||
function induced_map(fac::CEChainFactory, i::Int) | ||
if !haskey(fac.induced_maps, i) | ||
Z, inc = kernel(fac.c, i) | ||
B, pr = boundary(fac.c, i) | ||
@assert ambient_free_module(Z) === ambient_free_module(B) | ||
img_gens = elem_type(Z)[Z(g) for g in ambient_representatives_generators(B)] | ||
res_Z = kernel_resolution(fac, i) | ||
res_B = boundary_resolution(fac, i) | ||
aug_Z = augmentation_map(res_Z) | ||
aug_B = augmentation_map(res_B) | ||
img_gens = gens(res_B[0]) | ||
img_gens = aug_B[0].(img_gens) | ||
img_gens = elem_type(res_Z[0])[preimage(aug_Z[0], Z(repres(aug_B[0](g)))) for g in gens(res_B[0])] | ||
psi = hom(res_B[0], res_Z[0], img_gens; check=true) # TODO: Set to false | ||
@assert domain(psi) === boundary_resolution(fac, i)[0] | ||
@assert codomain(psi) === kernel_resolution(fac, i)[0] | ||
fac.induced_maps[i] = lift_map(boundary_resolution(fac, i), kernel_resolution(fac, i), psi; start_index=0) | ||
end | ||
return fac.induced_maps[i] | ||
end | ||
|
||
function (fac::CEChainFactory)(self::AbsHyperComplex, I::Tuple) | ||
(i, j) = I # i the resolution index, j the index in C | ||
|
||
res_Z = kernel_resolution(fac, j) | ||
|
||
if can_compute_map(fac.c, 1, (j,)) | ||
if fac.is_exact # Use the next kernel directly | ||
res_B = kernel_resolution(fac, j-1) | ||
return direct_sum(res_B[i], res_Z[i])[1] | ||
Check warning on line 97 in experimental/DoubleAndHyperComplexes/src/Objects/cartan_eilenberg_resolution.jl Codecov / codecov/patchexperimental/DoubleAndHyperComplexes/src/Objects/cartan_eilenberg_resolution.jl#L96-L97
|
||
else | ||
res_B = boundary_resolution(fac, j-1) | ||
return direct_sum(res_B[i], res_Z[i])[1] | ||
end | ||
end | ||
# We may assume that the next map can not be computed and is, hence, zero. | ||
return res_Z[i] | ||
end | ||
|
||
function can_compute(fac::CEChainFactory, self::AbsHyperComplex, I::Tuple) | ||
(i, j) = I | ||
can_compute_index(fac.c, (j,)) || return false | ||
return i >= 0 | ||
end | ||
|
||
### Production of the morphisms | ||
struct CEMapFactory{MorphismType} <: HyperComplexMapFactory{MorphismType} end | ||
|
||
function (fac::CEMapFactory)(self::AbsHyperComplex, p::Int, I::Tuple) | ||
(i, j) = I | ||
cfac = chain_factory(self) | ||
if p == 1 # vertical upwards maps | ||
if can_compute_map(cfac.c, 1, (j,)) | ||
# both dom and cod are direct sums in this case | ||
dom = self[I] | ||
cod = self[(i-1, j)] | ||
pr1 = canonical_projection(dom, 1) | ||
pr2 = canonical_projection(dom, 2) | ||
@assert domain(pr1) === domain(pr2) === dom | ||
inc1 = canonical_injection(cod, 1) | ||
inc2 = canonical_injection(cod, 2) | ||
@assert codomain(inc1) === codomain(inc2) === cod | ||
res_Z = kernel_resolution(cfac, j) | ||
@assert domain(map(res_Z, i)) === codomain(pr2) | ||
@assert codomain(map(res_Z, i)) === domain(inc2) | ||
res_B = boundary_resolution(cfac, j-1) | ||
@assert domain(map(res_B, i)) === codomain(pr1) | ||
@assert codomain(map(res_B, i)) === domain(inc1) | ||
return compose(pr1, compose(map(res_B, i), inc1)) + compose(pr2, compose(map(res_Z, i), inc2)) | ||
else | ||
res_Z = kernel_resolution(cfac, j) | ||
return map(res_Z, i) | ||
Check warning on line 139 in experimental/DoubleAndHyperComplexes/src/Objects/cartan_eilenberg_resolution.jl Codecov / codecov/patchexperimental/DoubleAndHyperComplexes/src/Objects/cartan_eilenberg_resolution.jl#L138-L139
|
||
end | ||
error("execution should never reach this point") | ||
elseif p == 2 # the horizontal maps | ||
dom = self[I] | ||
cod = self[(i, j-1)] | ||
if can_compute_map(cfac.c, 1, (j-1,)) | ||
# the codomain is also a direct sum | ||
if !cfac.is_exact | ||
psi = induced_map(cfac, j-1) | ||
phi = psi[i] | ||
inc = canonical_injection(cod, 2) | ||
pr = canonical_projection(dom, 1) | ||
@assert codomain(phi) === domain(inc) | ||
@assert codomain(pr) === domain(phi) | ||
return compose(pr, compose(phi, inc)) | ||
else | ||
inc = canonical_injection(cod, 2) | ||
pr = canonical_projection(dom, 1) | ||
return compose(pr, inc) | ||
Check warning on line 158 in experimental/DoubleAndHyperComplexes/src/Objects/cartan_eilenberg_resolution.jl Codecov / codecov/patchexperimental/DoubleAndHyperComplexes/src/Objects/cartan_eilenberg_resolution.jl#L156-L158
|
||
end | ||
error("execution should never reach this point") | ||
else | ||
# the codomain is just the kernel | ||
if !cfac.is_exact | ||
psi = induced_map(cfac, j-1) | ||
phi = psi[i] | ||
pr = canonical_projection(dom, 1) | ||
return compose(pr, phi) | ||
Check warning on line 167 in experimental/DoubleAndHyperComplexes/src/Objects/cartan_eilenberg_resolution.jl Codecov / codecov/patchexperimental/DoubleAndHyperComplexes/src/Objects/cartan_eilenberg_resolution.jl#L163-L167
|
||
else | ||
pr = canonical_projection(dom, 1) | ||
return pr | ||
Check warning on line 170 in experimental/DoubleAndHyperComplexes/src/Objects/cartan_eilenberg_resolution.jl Codecov / codecov/patchexperimental/DoubleAndHyperComplexes/src/Objects/cartan_eilenberg_resolution.jl#L169-L170
|
||
end | ||
error("execution should never reach this point") | ||
end | ||
error("execution should never reach this point") | ||
end | ||
error("direction $p out of bounds") | ||
end | ||
|
||
function can_compute(fac::CEMapFactory, self::AbsHyperComplex, p::Int, I::Tuple) | ||
(i, j) = I | ||
if p == 1 # vertical maps | ||
return i > 0 && can_compute(chain_factory(self).c, j) | ||
elseif p == 2 # horizontal maps | ||
return i >= 0 && can_compute_map(chain_factory(self).c, j) | ||
Check warning on line 184 in experimental/DoubleAndHyperComplexes/src/Objects/cartan_eilenberg_resolution.jl Codecov / codecov/patchexperimental/DoubleAndHyperComplexes/src/Objects/cartan_eilenberg_resolution.jl#L179-L184
|
||
end | ||
return false | ||
end | ||
|
||
### The concrete struct | ||
@attributes mutable struct CartanEilenbergResolution{ChainType, MorphismType} <: AbsHyperComplex{ChainType, MorphismType} | ||
internal_complex::HyperComplex{ChainType, MorphismType} | ||
|
||
function CartanEilenbergResolution( | ||
c::AbsHyperComplex{ChainType, MorphismType}; | ||
is_exact::Bool=false | ||
) where {ChainType, MorphismType} | ||
@assert dim(c) == 1 "complexes must be 1-dimensional" | ||
@assert has_lower_bound(c, 1) "complexes must be bounded from below" | ||
@assert direction(c, 1) == :chain "resolutions are only implemented for chain complexes" | ||
chain_fac = CEChainFactory(c; is_exact) | ||
map_fac = CEMapFactory{MorphismType}() # TODO: Do proper type inference here! | ||
|
||
# Assuming d is the dimension of the new complex | ||
internal_complex = HyperComplex(2, chain_fac, map_fac, [:chain, :chain]; lower_bounds = Union{Int, Nothing}[0, lower_bound(c, 1)]) | ||
# Assuming that ChainType and MorphismType are provided by the input | ||
return new{ChainType, MorphismType}(internal_complex) | ||
end | ||
end | ||
|
||
### Implementing the AbsHyperComplex interface via `underlying_complex` | ||
underlying_complex(c::CartanEilenbergResolution) = c.internal_complex | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
@testset "Cartan-Eilenberg resolutions" begin | ||
R, (x, y, z, w) = QQ[:x, :y, :z, :w] | ||
|
||
A = R[x y z; y z w] | ||
|
||
R1 = free_module(R, 1) | ||
I, inc = sub(R1, [a*R1[1] for a in minors(A, 2)]) | ||
M = cokernel(inc) | ||
R4 = free_module(R, 4) | ||
theta = sum(a*g for (a, g) in zip(gens(R), gens(R4)); init=zero(R4)) | ||
K = koszul_complex(Oscar.KoszulComplex, theta) | ||
|
||
comp = tensor_product(K, Oscar.ZeroDimensionalComplex(M)) | ||
res = Oscar.CartanEilenbergResolution(comp); | ||
tot = total_complex(res); | ||
tot_simp = simplify(tot); | ||
|
||
res_M, _ = free_resolution(Oscar.SimpleFreeResolution, M) | ||
comp2 = tensor_product(K, res_M) | ||
tot2 = total_complex(comp2) | ||
tot_simp2 = simplify(tot2); | ||
|
||
@test [ngens(tot_simp[i]) for i in 0:5] == [ngens(tot_simp2[i]) for i in 0:5] | ||
end | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
What is this
check
argument for? I am asking because it is not used in the function body. Is it just for consistency with other module types?There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It's for compatibility with the other signatures, yes.