Skip to content
Open
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 7 additions & 8 deletions experimental/InjectiveResolutions/src/InjectiveResolutions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -713,9 +713,9 @@ function _get_irreducible_ideal(kQ::MonoidAlgebra, J::IndecInj)
end

@doc raw"""
irreducible_resolution(M::SubquoModule{<:MonoidAlgebraElem}, i::Int = 0)
irreducible_resolution(M::SubquoModule{<:MonoidAlgebraElem}, i::Int = -1)

Return an irreducible resolution of $M$.
Return an irreducible resolution of $M$ (up to cohomological degree i).

!!! note
The monoid algebra $k[Q]$ must be normal.
Expand Down Expand Up @@ -759,7 +759,7 @@ by graded submodule of kQ^1 with 3 generators
over monoid algebra over rational field with cone of dimension 2
```
"""
function irreducible_resolution(M::SubquoModule{<:MonoidAlgebraElem}, i::Int=0)
function irreducible_resolution(M::SubquoModule{<:MonoidAlgebraElem}, i::Int=-1)
kQ = base_ring(M)
@req is_normal(kQ) "monoid algebra must be normal"

Expand Down Expand Up @@ -812,7 +812,7 @@ function irreducible_resolution(M::SubquoModule{<:MonoidAlgebraElem}, i::Int=0)
push!(cochain_maps, hi)

# end at cohomological degree i
if i > 0 && j == i
if j == i + 1
break
end
j = j + 1
Expand Down Expand Up @@ -955,7 +955,7 @@ function injective_resolution(M::SubquoModule{<:MonoidAlgebraElem}, i::Int)
#compute irreducible resolution of shifted module
a_shift = compute_shift(M, i+1)
M_a = twist(M, -G(a_shift))
irr_res = irreducible_resolution(M_a)
irr_res = irreducible_resolution(M_a,i)

#get injective modules up to cohomological degree i, i.e. J^0, J^1, ...,J^i
inj_modules = Vector{InjMod}()
Expand All @@ -968,7 +968,7 @@ function injective_resolution(M::SubquoModule{<:MonoidAlgebraElem}, i::Int)

#get all needed maps (as k-matrix or k[Q]-matrix?)
cochain_maps = [
matrix(irr_res.cochain_maps[k]) for k in eachindex(irr_res.cochain_maps) if 1 < k <= i+1
matrix(irr_res.cochain_maps[k]) for k in eachindex(irr_res.cochain_maps) if 1 <= k <= i+1
]
return InjRes(M, inj_modules, cochain_maps, length(inj_modules)-1, irr_res, a_shift)
end
Expand Down Expand Up @@ -1064,5 +1064,4 @@ export zeroth_local_cohomology

export MonoidAlgebra
export MonoidAlgebraIdeal
export MonoidAlgebraElem

export MonoidAlgebraElem
Loading