Skip to content

A tutorial for building a scalable price tracker with Python and Oxylabs Best Buy Scraper API to get price change alerts and historical data.

Notifications You must be signed in to change notification settings

oxylabs/best-buy-price-tracker

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 

Repository files navigation

Best Buy Price Tracker

Oxylabs promo code

Here, you'll find the process of building a scalable price tracker for Best Buy, one of the largest e-commerce websites for electronics.

The tutorial uses Python and Oxylabs’ Best Buy API (a part of Web Scraper API). You can get a 1-week free trial by registering on the dashboard.

For visualizations and in-depth explanations, see our blog post.

1. Installing prerequisite libraries

pip install pandas
pip install matplotlib

2. Making the initial request

import requests

USERNAME = "username"
PASSWORD = "password"

# Structure payload.
payload = {
   'source': 'universal',
   'url': "https://www.bestbuy.com/site/samsung-galaxy-z-flip4-128gb-unlocked-graphite/6512618.p?skuId=6512618&intl=nosplash",
   'geo_location': 'United States',
   'parse': True,
}

# Get response.
    response = requests.request(
        'POST',
        'https://realtime.oxylabs.io/v1/queries',
        auth=(USERNAME, PASSWORD),
        json=payload,
    )

print(response.json())

3. Creating the core of the tracker

Create a function that would read the historical price tracker data.

def read_past_data(filepath):
    results = {}

    if not os.path.isfile(filepath):
        open(filepath, 'a').close()

    if not os.stat(filepath).st_size == 0:
        results_df = pd.read_json(filepath, convert_axes=False)
        results = results_df.to_dict()
        return results
    
    return results

As the historical price data is now loaded, think of a function that would take the past price tracker data and add the present price to it.

def add_todays_prices(results, tracked_product_links):
    today = date.today()

    for link in tracked_product_links:
        product = get_product(link)

        if product["title"] not in results:
            results[product["title"]] = {}
        
        results[product["title"]][today.strftime("%d %B, %Y")] = {
            "price": product["price"],
            "currency": product["currency"],
        }
    
    return results

Having the prices updated for the present, move on to saving the results back to the file you started from, thus finishing the process loop.

def save_results(results, filepath):
    df = pd.DataFrame.from_dict(results)

    df.to_json(filepath)

    return

Finally, move the connection to the Scraper API to a separate function and combine all you have so far.

import os
import requests
import os.path
from datetime import date
import pandas as pd

def get_product(link):
    USERNAME = "username"
    PASSWORD = "password"

    # Structure payload.
    payload = {
        'source': 'universal',
        'url': link,
        'geo_location': 'United States',
        'parse': True,
    }

    # Get response.
    response = requests.request(
        'POST',
        'https://realtime.oxylabs.io/v1/queries',
        auth=(USERNAME, PASSWORD),
        json=payload,
    )
    response_json = response.json()

    content = response_json["results"][0]["content"]

    product = {
        "title": content["title"],
        "price": content["price"]["price"],
        "currency": content["price"]["currency"]
    }
    return product

def read_past_data(filepath):
    results = {}

    if not os.path.isfile(filepath):
        open(filepath, 'a').close()

    if not os.stat(filepath).st_size == 0:
        results_df = pd.read_json(filepath, convert_axes=False)
        results = results_df.to_dict()
        return results
    
    return results

def save_results(results, filepath):
    df = pd.DataFrame.from_dict(results)

    df.to_json(filepath)

    return

def add_todays_prices(results, tracked_product_links):
    today = date.today()

    for link in tracked_product_links:
        product = get_product(link)

        if product["title"] not in results:
            results[product["title"]] = {}
      
        results[product["title"]][today.strftime("%d %B, %Y")] = {
            "price": product["price"],
            "currency": product["currency"],
        }
  
    return results

def main():
    results_file = "data.json"

    tracked_product_links = [
        "https://www.bestbuy.com/site/samsung-galaxy-z-flip4-128gb-unlocked-graphite/6512618.p?skuId=6512618&intl=nosplash",
        "https://www.bestbuy.com/site/samsung-galaxy-z-flip5-256gb-unlocked-graphite/6548838.p?skuId=6548838"
    ]

    past_results = read_past_data(results_file)

    updated_results = add_todays_prices(past_results, tracked_product_links)

    save_results(updated_results, results_file)
  
if __name__ == "__main__":
    main()

4. Plotting price history

def plot_history_chart(results):
    for product in results:
        dates = []
        prices = []
        
        for entry_date in results[product]:
            dates.append(entry_date)
            prices.append(results[product][entry_date]["price"])

        plt.plot(dates,prices, label=product)
        
        plt.xlabel("Date")
        plt.ylabel("Price")

    plt.title("Product prices over time")
    plt.legend()
    plt.show()

5. Creating price drop alerts

def check_for_pricedrop(results):
    for product in results:
        today = date.today()
        yesterday = today - timedelta(days = 1)

        change = results[product][today.strftime("%d %B, %Y")]["price"] - results[product][yesterday.strftime("%d %B, %Y")]["price"]

        if change < 0:
            print(f'Price for {product} has dropped by {change}!')

6. The final code

import os
import requests
import os.path
from datetime import date
from datetime import timedelta
import pandas as pd
import matplotlib.pyplot as plt


def get_product(link):
    USERNAME = "username"
    PASSWORD = "password"

    # Structure payload.
    payload = {
        'source': 'universal',
        'url': link,
        'geo_location': 'United States',
        'parse': True,
    }

    # Get response.
    response = requests.request(
        'POST',
        'https://realtime.oxylabs.io/v1/queries',
        auth=(USERNAME, PASSWORD),
        json=payload,
    )
    response_json = response.json()

    content = response_json["results"][0]["content"]

    product = {
        "title": content["title"],
        "price": content["price"]["price"],
        "currency": content["price"]["currency"]
    }
    return product

def read_past_data(filepath):
    results = {}

    if not os.path.isfile(filepath):
        open(filepath, 'a').close()

    if not os.stat(filepath).st_size == 0:
        results_df = pd.read_json(filepath, convert_axes=False)
        results = results_df.to_dict()
        return results
    
    return results

def save_results(results, filepath):
    df = pd.DataFrame.from_dict(results)

    df.to_json(filepath)

    return

def add_todays_prices(results, tracked_product_links):
    today = date.today()

    for link in tracked_product_links:
        product = get_product(link)

        if product["title"] not in results:
            results[product["title"]] = {}
        
        results[product["title"]][today.strftime("%d %B, %Y")] = {
            "price": product["price"],
            "currency": product["currency"],
        }
    
    return results

def plot_history_chart(results):
    for product in results:
        dates = []
        prices = []
        
        for entry_date in results[product]:
            dates.append(entry_date)
            prices.append(results[product][entry_date]["price"])

        plt.plot(dates,prices, label=product)
        
        plt.xlabel("Date")
        plt.ylabel("Price")

    plt.title("Product prices over time")
    plt.legend()
    plt.show()

def check_for_pricedrop(results):
    for product in results:
        today = date.today()
        yesterday = today - timedelta(days = 1)

        change = results[product][today.strftime("%d %B, %Y")]["price"] - results[product][yesterday.strftime("%d %B, %Y")]["price"]

        if change < 0:
            print(f'Price for {product} has dropped by {change}!')


def main():
    results_file = "data.json"

    tracked_product_links = [
        "https://www.bestbuy.com/site/samsung-galaxy-z-flip4-128gb-unlocked-graphite/6512618.p?skuId=6512618&intl=nosplash",
        "https://www.bestbuy.com/site/samsung-galaxy-z-flip5-256gb-unlocked-graphite/6548838.p?skuId=6548838"
    ]

    past_results = read_past_data(results_file)

    updated_results = add_todays_prices(past_results, tracked_product_links)

    plot_history_chart(updated_results)

    check_for_pricedrop(updated_results)

    save_results(updated_results, results_file)
    
if __name__ == "__main__":
    main()

Wrapping up

For all of the API parameters, see our documentation.

If you need assistance, don't hesitate to contact us at [email protected].

About

A tutorial for building a scalable price tracker with Python and Oxylabs Best Buy Scraper API to get price change alerts and historical data.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages