Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 10 additions & 1 deletion pandas/core/window/rolling.py
Original file line number Diff line number Diff line change
Expand Up @@ -1585,10 +1585,19 @@ def _generate_cython_apply_func(
function=function,
)

apply_index = self._on
if not raw and isinstance(self, BaseWindowGroupby):
# Groupby rolling reorders values by group; align the index to match.
groupby_order = self._grouper.result_ilocs
if len(groupby_order) > 0:
apply_index = self._on.take(groupby_order)
else:
apply_index = self._on[:0]

def apply_func(values, begin, end, min_periods, raw=raw):
if not raw:
# GH 45912
values = Series(values, index=self._on, copy=False)
values = Series(values, index=apply_index, copy=False)
return window_func(values, begin, end, min_periods)

return apply_func
Expand Down
38 changes: 38 additions & 0 deletions pandas/tests/window/test_rolling.py
Original file line number Diff line number Diff line change
Expand Up @@ -947,6 +947,44 @@ def scaled_sum(*args):
tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize("sort, group_order", [(True, [1, 2]), (False, [2, 1])])
def test_groupby_rolling_apply_index_alignment(sort, group_order):
dates_1 = date_range("2024-01-01", periods=5, freq="D", name="date", unit="ns")
dates_2 = date_range("2024-02-01", periods=5, freq="D", name="date", unit="ns")
# Ensure Id=2 appears before Id=1 in the input.
index = dates_2.append(dates_1)
df = DataFrame(
{
"Id": [2] * len(dates_2) + [1] * len(dates_1),
"value": np.arange(len(index)),
},
index=index,
)

result = (
df["value"]
.groupby(df["Id"], sort=sort)
.rolling(5, min_periods=1)
.apply(lambda x: x.index[-1].value, raw=False)
)

group_dates = {1: dates_1, 2: dates_2}
expected_index = MultiIndex.from_arrays(
[
[group_order[0]] * len(group_dates[group_order[0]])
+ [group_order[1]] * len(group_dates[group_order[1]]),
list(group_dates[group_order[0]]) + list(group_dates[group_order[1]]),
],
names=["Id", "date"],
)
expected_values = np.concatenate(
[group_dates[group_order[0]].asi8, group_dates[group_order[1]].asi8]
).astype("float64", copy=False)
expected = Series(expected_values, index=expected_index, name="value")

tm.assert_series_equal(result, expected)


@pytest.mark.parametrize("add", [0.0, 2.0])
def test_rolling_numerical_accuracy_kahan_mean(add, unit):
# GH: 36031 implementing kahan summation
Expand Down
Loading