title | emoji | colorFrom | colorTo | sdk | sdk_version | app_file | pinned | license |
---|---|---|---|---|---|---|---|---|
Time Series Autocorrelation Demo |
📈 |
indigo |
blue |
streamlit |
1.21.0 |
app.py |
false |
openrail |
Tool demonstrating time series autocorrelation analysis with Python
Assumes uploaded data is clean.
git clone https://github.com/pkiage/tool-time-series-autocorrelation-demo
or
gh repo clone pkiage/tool-time-series-autocorrelation-demo
Download ZIP
python -m venv venv
.\venv\bin\activate
.\venv\Scripts\activate
pip install -r requirements.txt
python setup.py build
python setup.py install
streamlit run src/app.py
Project structure based on the cookiecutter data science project template.
Initial Setup
- When creating the Spaces Configuration Reference ensure the Streamlit Space version (sdk_version) specified is supported by HF
git remote add space https://huggingface.co/spaces/pkiage/time_series_autocorrelation_demo
git push --force space main
- When syncing with Hugging Face via Github Actions the User Access Token created on Hugging Face (HF) should have write access
- Hugging Face Space: https://huggingface.co/spaces/pkiage/time_series_autocorrelation_demo
- Streamlit Community Cloud: https://pkiage-tool-time-series-autocorrelation-demo-app-l0umps.streamlit.app/