Skip to content

OriGen: Enhancing RTL Code Generation with Code-to-Code Augmentation and Self-Reflection(ICCAD 2024)

Notifications You must be signed in to change notification settings

pku-liang/OriGen

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

OriGen: Enhancing RTL Code Generation with Code-to-Code Augmentation and Self-Reflection

📖 Introduction

OriGen is a fine-tuned LoRA model designed for Verilog code generation. It's built on top of DeepSeek Coder 7B, leveraging datasets generated through code-to-code augmentation and self-reflection techniques.

🔧 Models

  1. OriGen: Focused on Verilog code generation, trained on origen_dataset_instruction
  2. OriGen_Fix: Specialized in fixing syntax errors in Verilog code, based on OriGen, further trained using origen_dataset_debug

🔗 Quick Links

🚀 Quick Start

Environment Setup

conda create -n origen python=3.11
conda activate origen
pip install -r requirements.txt

Usage Example

Here is an example of how to use the model. Please note that the base model, DeepSeek Coder 7B, is loaded in float16 precision, even though its default precision is bfloat16. This choice is made because our experiments show that Lora trained in float16 outperforms those trained in bfloat16.

from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import torch
from peft import PeftModel

model_name = "deepseek-ai/deepseek-coder-7b-instruct-v1.5"

tokenizer = AutoTokenizer.from_pretrained(model_name)

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    low_cpu_mem_usage=True,
    torch_dtype=torch.float16,
    attn_implementation="flash_attention_2",
    device_map="auto",
).to("cuda")

model = PeftModel.from_pretrained(model, model_id="henryen/OriGen")
model.eval()

streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

prompt = "### Instruction: Please act as a professional Verilog designer. and provide Verilog code based on the given instruction. Generate a concise Verilog module for a 8 bit full adder, don't include any unnecessary code.\n### Response: "

inputs = tokenizer(prompt, return_tensors="pt").to("cuda")

outputs = model.generate(
    **inputs, 
    max_new_tokens=1000, 
    do_sample=False, 
    eos_token_id=tokenizer.eos_token_id,
    pad_token_id=tokenizer.pad_token_id,
    streamer=streamer
)

Output

module full_adder(
    input [7:0] a,
    input [7:0] b,
    input cin,
    output [7:0] sum,
    output cout
);

assign {cout, sum} = a + b + cin;

endmodule

📊 Evaluation

We've released scripts for the Verilog-Eval benchmark. For details, please refer to the evaluation README.

OriGen Evaluation Results

📄 Paper

arXiv: https://arxiv.org/abs/2407.16237

If you find this work useful, please cite our paper:

@article{2024origen,
  title={OriGen: Enhancing RTL Code Generation with Code-to-Code Augmentation and Self-Reflection},
  author={Cui, Fan and Yin, Chenyang and Zhou, Kexing and Xiao, Youwei and Sun, Guangyu and Xu, Qiang and Guo, Qipeng and Song, Demin and Lin, Dahua and Zhang, Xingcheng and others},
  journal={arXiv preprint arXiv:2407.16237},
  year={2024}
}

About

OriGen: Enhancing RTL Code Generation with Code-to-Code Augmentation and Self-Reflection(ICCAD 2024)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages