Skip to content

pnnl/PyParticle

Repository files navigation

PyParticle

CI

A Python library for constructing aerosol particle populations, attaching species-level physical properties, building per-particle morphologies, and aggregating to population-level aerosol properties. The package uses factory/builder discovery, so new population types, aerosol species, and morphologies can be added by dropping small modules into factory/ folders.

Install

Create a dev environment

conda env create -f environment.yml -n pyparticle
conda activate pyparticle

Editable install

pip install -e .

Optional extras (used by some examples/tests)

  • PyMieScatt (used for optics calculations)
  • netCDF4 (used to construct populations from aerosol model output)

Install them in the same environment if you need those features:

pip install PyMieScatt netCDF4

Quickstart

Build a population → attach morphology (if needed) → query an aerosol property.

Example (optics shown here; the same pattern applies to freezing):

from PyParticle.population.builder import build_population
from PyParticle.optics.builder import build_optical_population

# 1) Build a simple binned lognormal population (single species: SO4)
pop_cfg = {
    "type": "binned_lognormals",
    "GMD": [100e-9],               # meters
    "GSD": [1.6],
    "N":   [1e8],                  # m^-3
    "aero_spec_names": [["SO4"]],
    "aero_spec_fracs": [[1.0]],
    "N_bins": 60,
    "species_modifications": {"SO4": {"density": 1770, "n_550": 1.45, "k_550": 0.0}}
}
pop = build_population(pop_cfg)

# 2) Build optics (homogeneous spheres) on an RH/λ grid
opt_cfg = {"type": "homogeneous", "wvl_grid": [550e-9], "rh_grid": [0.0]}
opt_pop = build_optical_population(pop, opt_cfg)

# 3) Query scattering coefficient at RH=0, λ=550 nm (SI units inside: meters)
b_scat = opt_pop.get_optical_coeff("b_scat", rh=0.0)  # numpy array or float depending on wvl_grid defined in opt_cfg
print(b_scat)

Concepts & Architecture (brief)

  • Particle: lightweight object holding species and per-species masses; exposes helpers like dry/wet diameters and κ.

  • ParticlePopulation: container for many Particle items with number concentrations and IDs; carries species_modifications: Dict[str, dict] for runtime overrides.

  • Derived properties:

    • OpticalParticle / OpticalPopulation: wraps base particles to compute per-particle optical cross-sections (Csca, Cabs, Cext, g) and aggregates to optical coefficients (b_scat, b_abs, etc.).
    • CCN (cloud condensation nuclei): water uptake and activation are computed on the base Particle / ParticlePopulation.
    • FreezingParticle / FreezingPopulation: wraps base particles to evaluate heterogeneous ice nucleation properties (e.g., Jhet/IN metrics) and aligns results with population IDs.

Discovery / extension points

  • Population types: add a module under src/PyParticle/population/factory/ exposing a build(config) callable. The population builder auto-discovers modules in that folder.
  • Species default: define default species in src/PyParticle/species/factory.py.
  • Optics morphologies: add a module under src/PyParticle/optics/factory/ and register a build callable (the registry or module-level build will be discovered).
  • Freezing morphologies: add a module under src/PyParticle/freezing/factory/ and register a build callable (the registry or module-level build will be discovered).

Developer guidance and templates are available in docs/developer/factories.md.

Repository layout (high level)

  • src/PyParticle/ — core library

    • aerosol_particle.py
    • population/ (builder, base, factories)
    • optics/ (builder, base, refractive_index, factories)
    • species/ (registry and data readers)
    • freezing/ (builder, base, factories)
    • analysis/ (particle- and population-level)
    • viz/ (plotting helpers)
  • examples/

  • datasets/ (species_data/, model_data/)

  • tests/

  • docs/

  • environment.yml, setup.py, pyproject.toml, tools/

Testing

Run unit tests locally with the conda env active:

pytest -q

Contributing

  1. Fork or branch from main/develop.
  2. Add tests (unit tests for new behavior; integration tests when optional deps apply).
  3. Run the test suite locally and ensure examples still run.
  4. Submit a PR with a clear description and rationale.

License

See LICENSE in the repository root.

Acknowledgments

The PyParticle architecture was developed under the Integrated Cloud, Land-surface, and Aerosol System Study (ICLASS) project with support from the U.S. Department of Energy's Atmospheric System Research. Development and optics work were supported in part by Pacific Northwest National Laboratory.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published