This project is for the paper "Robust Inference via Generative Classifiers for Handling Noisy Labels ". Codes will be updated.
It is tested under Ubuntu Linux 16.04.1 and Python 3.6 environment, and requries Pytorch package to be installed:
- Pytorch: Only GPU version (0.3.1) is available.
- scipy
- scikit-learn
-
Semantic Noisy Label: Datasets for reproducing the results on Table 6.
-
OpenSet Noisy Label: Datasets for reproducing the results on Table 7.
# dataset: CIFAR-10, noise type: uniform, noise fraction: 60%
python generate_labels.py --dataset cifar10 --noise_type uniform --noise_fraction 60
# model: DenseNet, dataset: CIFAR-10, noise type: uniform, noise fraction: 60%, gpu 0
python train.py --net_type densenet --dataset cifar10 --noise_type uniform --noise_fraction 60 --gpu 0
# model: DenseNet, dataset: CIFAR-10, noise type: uniform, noise fraction: 60%
python inference.py --net_type densenet --dataset cifar10 --noise_type uniform --noise_fraction 60 --gpu 0