QUE CORE is a hybrid Rust + Python runtime engine designed for AI agents to control computers. It provides 121 tools consolidated into 26 powerful functions for system control, automation, file management, networking, security, and more.
QUE CORE serves as the foundational layer between AI agents and operating systems, enabling computer use agents to perceive system state and perform real actions. The hybrid architecture combines Rust's performance for system operations with Python's flexibility for orchestration and AI integration.
- Rust Engine: High-performance system integration (battery monitoring, process management, shell execution)
- Python Layer: Tool orchestration, API server, plugin system
- FastAPI Server: REST and WebSocket endpoints for AI agent communication
- Cross-Platform: Windows, macOS, Linux support
pip install que-core# AI/ML capabilities
pip install que-core[ai]
# Computer vision
pip install que-core[vision]
# Audio processing
pip install que-core[audio]
# Data science tools
pip install que-core[datascience]
# All features
pip install que-core[all]cargo add que_core# Start the API server
que-server
# Run the main runtime
que-corefrom que_core.tools.system_tools import system_query
from que_core.tools.automation_tools import interact
# Get system information
result = system_query(args={'what': 'overview'})
print(f"OS: {result['result']['os']}")
print(f"Memory: {result['result']['memory']['total_gb']}GB")
# Control mouse
interact(args={'action': 'move', 'x': 500, 'y': 300})
interact(args={'action': 'click', 'x': 500, 'y': 300})from que_core.api.server import start_server
# Start server on localhost:8000
start_server()QUE CORE consolidates 100+ individual tools into 26 powerful functions:
system_query: Get system information, battery status, memory, CPUsystem_control: Volume control, screen lock, shutdown, restartprocess_manager: List, find, kill processes and applications
file_manager: Create, read, write, delete, copy, move filesfile_search: Search files by name, content, metadata
interact: Mouse clicks, keyboard input, scrolling, hotkeysautomation_sequence: Execute multi-step automation workflows
network_tools: Ping, HTTP requests, download filesweb_browser: Open URLs, web automationauto_web_search: Automated web searching
security_manager: File encryption, password generation, hashing
dev_assistant: Git operations, Python scripts, testing, buildingcode_manager: Code linting, formatting, analysis
data_processor: CSV/JSON/Excel processing, plotting, analysis
document_processor: PDF extraction, document conversiontext_analyzer: Sentiment analysis, spell checking, text statistics
audio_control: Recording, playback, volume controlmedia_processor: Audio transcription, text-to-speech
vision_system: Camera capture, image processing, object detection
context_get: Window info, cursor position, clipboard, screen statecontext_capture: Screenshots, screen recording, OCR
app_manager: Launch, close, switch applicationswindow_control: Resize, move, manage windows
shell_execute: Run system commands, manage processesenvironment_manager: Environment variables, virtual environments
settings_manager: Wallpaper, themes, WiFi, Bluetooth, fonts
All tools follow a consistent interface:
result = tool_function(args={
'action': 'specific_action',
'param1': 'value1',
'param2': 'value2'
})
# Response format
{
'success': True/False,
'result': {...}, # Tool-specific data
'error': None or "error message"
}# List all tools
GET /tools
# Call a tool
POST /call
{
"tool_name": "system_query",
"args": {"what": "battery"}
}Connect to ws://localhost:8000/ws for real-time tool calling.
QUE_CORE_HOST: API server host (default: 0.0.0.0)QUE_CORE_PORT: API server port (default: 8000)QUE_CORE_LOG_LEVEL: Logging level (default: INFO)
from que_core.runtime.main import configure
configure({
'api_host': '127.0.0.1',
'api_port': 8080,
'enable_rust': True,
'log_level': 'DEBUG'
})# Clone repository
git clone https://github.com/qubasehq/que-tools
cd que-tools
# Create virtual environment
python -m venv venv
source venv/bin/activate # Linux/Mac
# or venv\Scripts\activate # Windows
# Install development dependencies
pip install -e .[dev]
# Build Rust extension
maturin develop
# Run tests
pytestque-tools/
├── src/ # Rust source code
│ ├── lib.rs # Main Rust library
│ ├── system.rs # System tools
│ ├── shell.rs # Shell operations
│ └── network.rs # Network operations
├── que_core/ # Python package
│ ├── tools/ # Tool implementations
│ ├── api/ # FastAPI server
│ └── runtime/ # Runtime engine
├── pyproject.toml # Python package config
├── Cargo.toml # Rust package config
└── README.md # This file
- Full functionality
- Requires X11 or Wayland for UI automation
- Audio requires ALSA or PulseAudio
- Full functionality
- Uses native macOS APIs
- Requires accessibility permissions for automation
- Full functionality
- Uses Win32 APIs
- No additional permissions required
- Rust Engine: Sub-millisecond system operations
- Memory Usage: ~50MB base footprint
- API Latency: <10ms for most operations
- Concurrent Tools: Supports parallel execution
- Local-First: All operations run locally by default
- Sandboxed: Tools operate within user permissions
- Encrypted: File encryption using industry-standard algorithms
- Auditable: All operations logged and traceable
MIT License - see LICENSE file for details.
- Fork the repository
- Create a feature branch
- Make changes with tests
- Submit a pull request