Skip to content

QUE CORE - Hybrid Rust+Python runtime for AI agents to control computers. 121 tools consolidated into 26 powerful functions for system control, automation, file management, networking, security, and more. Cross-platform support for Windows, macOS, Linux.

License

Notifications You must be signed in to change notification settings

qubasehq/que-tools

Repository files navigation

QUE CORE

QUE CORE is a hybrid Rust + Python runtime engine designed for AI agents to control computers. It provides 121 tools consolidated into 26 powerful functions for system control, automation, file management, networking, security, and more.

Overview

QUE CORE serves as the foundational layer between AI agents and operating systems, enabling computer use agents to perceive system state and perform real actions. The hybrid architecture combines Rust's performance for system operations with Python's flexibility for orchestration and AI integration.

Architecture

  • Rust Engine: High-performance system integration (battery monitoring, process management, shell execution)
  • Python Layer: Tool orchestration, API server, plugin system
  • FastAPI Server: REST and WebSocket endpoints for AI agent communication
  • Cross-Platform: Windows, macOS, Linux support

Installation

Python Package (Recommended)

pip install que-core

With Optional Features

# AI/ML capabilities
pip install que-core[ai]

# Computer vision
pip install que-core[vision]

# Audio processing
pip install que-core[audio]

# Data science tools
pip install que-core[datascience]

# All features
pip install que-core[all]

Rust Package

cargo add que_core

Quick Start

Command Line Usage

# Start the API server
que-server

# Run the main runtime
que-core

Python API

from que_core.tools.system_tools import system_query
from que_core.tools.automation_tools import interact

# Get system information
result = system_query(args={'what': 'overview'})
print(f"OS: {result['result']['os']}")
print(f"Memory: {result['result']['memory']['total_gb']}GB")

# Control mouse
interact(args={'action': 'move', 'x': 500, 'y': 300})
interact(args={'action': 'click', 'x': 500, 'y': 300})

API Server

from que_core.api.server import start_server

# Start server on localhost:8000
start_server()

Tool Categories

QUE CORE consolidates 100+ individual tools into 26 powerful functions:

System Tools (3 functions)

  • system_query: Get system information, battery status, memory, CPU
  • system_control: Volume control, screen lock, shutdown, restart
  • process_manager: List, find, kill processes and applications

File System (2 functions)

  • file_manager: Create, read, write, delete, copy, move files
  • file_search: Search files by name, content, metadata

Automation (2 functions)

  • interact: Mouse clicks, keyboard input, scrolling, hotkeys
  • automation_sequence: Execute multi-step automation workflows

Network & Web (3 functions)

  • network_tools: Ping, HTTP requests, download files
  • web_browser: Open URLs, web automation
  • auto_web_search: Automated web searching

Security (1 function)

  • security_manager: File encryption, password generation, hashing

Development (2 functions)

  • dev_assistant: Git operations, Python scripts, testing, building
  • code_manager: Code linting, formatting, analysis

Data Processing (1 function)

  • data_processor: CSV/JSON/Excel processing, plotting, analysis

Documents (2 functions)

  • document_processor: PDF extraction, document conversion
  • text_analyzer: Sentiment analysis, spell checking, text statistics

Audio & Media (2 functions)

  • audio_control: Recording, playback, volume control
  • media_processor: Audio transcription, text-to-speech

Vision (1 function)

  • vision_system: Camera capture, image processing, object detection

Context Awareness (2 functions)

  • context_get: Window info, cursor position, clipboard, screen state
  • context_capture: Screenshots, screen recording, OCR

App Control (2 functions)

  • app_manager: Launch, close, switch applications
  • window_control: Resize, move, manage windows

Shell & Commands (2 functions)

  • shell_execute: Run system commands, manage processes
  • environment_manager: Environment variables, virtual environments

System Settings (1 function)

  • settings_manager: Wallpaper, themes, WiFi, Bluetooth, fonts

API Reference

All tools follow a consistent interface:

result = tool_function(args={
    'action': 'specific_action',
    'param1': 'value1',
    'param2': 'value2'
})

# Response format
{
    'success': True/False,
    'result': {...},  # Tool-specific data
    'error': None or "error message"
}

HTTP API

# List all tools
GET /tools

# Call a tool
POST /call
{
    "tool_name": "system_query",
    "args": {"what": "battery"}
}

WebSocket API

Connect to ws://localhost:8000/ws for real-time tool calling.

Configuration

Environment Variables

  • QUE_CORE_HOST: API server host (default: 0.0.0.0)
  • QUE_CORE_PORT: API server port (default: 8000)
  • QUE_CORE_LOG_LEVEL: Logging level (default: INFO)

Python Configuration

from que_core.runtime.main import configure

configure({
    'api_host': '127.0.0.1',
    'api_port': 8080,
    'enable_rust': True,
    'log_level': 'DEBUG'
})

Development

Building from Source

# Clone repository
git clone https://github.com/qubasehq/que-tools
cd que-tools

# Create virtual environment
python -m venv venv
source venv/bin/activate  # Linux/Mac
# or venv\Scripts\activate  # Windows

# Install development dependencies
pip install -e .[dev]

# Build Rust extension
maturin develop

# Run tests
pytest

Project Structure

que-tools/
├── src/                    # Rust source code
│   ├── lib.rs             # Main Rust library
│   ├── system.rs          # System tools
│   ├── shell.rs           # Shell operations
│   └── network.rs         # Network operations
├── que_core/              # Python package
│   ├── tools/             # Tool implementations
│   ├── api/               # FastAPI server
│   └── runtime/           # Runtime engine
├── pyproject.toml         # Python package config
├── Cargo.toml             # Rust package config
└── README.md              # This file

Platform Support

Linux

  • Full functionality
  • Requires X11 or Wayland for UI automation
  • Audio requires ALSA or PulseAudio

macOS

  • Full functionality
  • Uses native macOS APIs
  • Requires accessibility permissions for automation

Windows

  • Full functionality
  • Uses Win32 APIs
  • No additional permissions required

Performance

  • Rust Engine: Sub-millisecond system operations
  • Memory Usage: ~50MB base footprint
  • API Latency: <10ms for most operations
  • Concurrent Tools: Supports parallel execution

Security

  • Local-First: All operations run locally by default
  • Sandboxed: Tools operate within user permissions
  • Encrypted: File encryption using industry-standard algorithms
  • Auditable: All operations logged and traceable

License

MIT License - see LICENSE file for details.

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make changes with tests
  4. Submit a pull request

Support

About

QUE CORE - Hybrid Rust+Python runtime for AI agents to control computers. 121 tools consolidated into 26 powerful functions for system control, automation, file management, networking, security, and more. Cross-platform support for Windows, macOS, Linux.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published