-
Notifications
You must be signed in to change notification settings - Fork 1k
Introduce some simple benchmarks for rolling window aggregations #17613
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
6606024
da4accc
cb2530f
84f2086
6efc76d
eae9619
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,70 @@ | ||
| /* | ||
| * Copyright (c) 2024-2025, NVIDIA CORPORATION. | ||
| * | ||
| * Licensed under the Apache License, Version 2.0 (the "License"); | ||
| * you may not use this file except in compliance with the License. | ||
| * You may obtain a copy of the License at | ||
| * | ||
| * http://www.apache.org/licenses/LICENSE-2.0 | ||
| * | ||
| * Unless required by applicable law or agreed to in writing, software | ||
| * distributed under the License is distributed on an "AS IS" BASIS, | ||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| * See the License for the specific language governing permissions and | ||
| * limitations under the License. | ||
| */ | ||
|
|
||
| #include <benchmarks/common/generate_input.hpp> | ||
| #include <benchmarks/fixture/benchmark_fixture.hpp> | ||
|
|
||
| #include <cudf/aggregation.hpp> | ||
| #include <cudf/rolling.hpp> | ||
| #include <cudf/sorting.hpp> | ||
| #include <cudf/utilities/default_stream.hpp> | ||
|
|
||
| #include <nvbench/nvbench.cuh> | ||
|
|
||
| template <typename Type> | ||
| void bench_row_grouped_rolling_sum(nvbench::state& state, nvbench::type_list<Type>) | ||
| { | ||
| auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows")); | ||
| auto const cardinality = static_cast<cudf::size_type>(state.get_int64("cardinality")); | ||
| auto const preceding_size = static_cast<cudf::size_type>(state.get_int64("preceding_size")); | ||
| auto const following_size = static_cast<cudf::size_type>(state.get_int64("following_size")); | ||
| auto const min_periods = static_cast<cudf::size_type>(state.get_int64("min_periods")); | ||
|
|
||
| auto const keys = [&] { | ||
| data_profile const profile = | ||
| data_profile_builder() | ||
| .cardinality(cardinality) | ||
| .no_validity() | ||
| .distribution(cudf::type_to_id<int32_t>(), distribution_id::UNIFORM, 0, num_rows); | ||
| auto keys = create_random_column(cudf::type_to_id<int32_t>(), row_count{num_rows}, profile); | ||
| return cudf::sort(cudf::table_view{{keys->view()}}); | ||
| }(); | ||
| data_profile const profile = data_profile_builder().cardinality(0).no_validity().distribution( | ||
| cudf::type_to_id<Type>(), distribution_id::UNIFORM, 0, 100); | ||
| auto vals = create_random_column(cudf::type_to_id<Type>(), row_count{num_rows}, profile); | ||
|
|
||
| auto req = cudf::make_sum_aggregation<cudf::rolling_aggregation>(); | ||
|
|
||
| auto const mem_stats_logger = cudf::memory_stats_logger(); | ||
| state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); | ||
| state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { | ||
| auto const result = cudf::grouped_rolling_window( | ||
| keys->view(), vals->view(), preceding_size, following_size, min_periods, *req); | ||
| }); | ||
| auto const elapsed_time = state.get_summary("nv/cold/time/gpu/mean").get_float64("value"); | ||
| state.add_element_count(static_cast<double>(num_rows) / elapsed_time / 1'000'000., "Mrows/s"); | ||
| state.add_buffer_size( | ||
| mem_stats_logger.peak_memory_usage(), "peak_memory_usage", "peak_memory_usage"); | ||
| } | ||
|
|
||
| NVBENCH_BENCH_TYPES(bench_row_grouped_rolling_sum, | ||
| NVBENCH_TYPE_AXES(nvbench::type_list<std::int32_t, double>)) | ||
| .set_name("row_grouped_rolling_sum") | ||
| .add_int64_power_of_two_axis("num_rows", {14, 28}) | ||
| .add_int64_axis("preceding_size", {1, 10}) | ||
| .add_int64_axis("following_size", {2}) | ||
| .add_int64_axis("min_periods", {1}) | ||
| .add_int64_axis("cardinality", {10, 100, 1'000'000, 100'000'000}); | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,134 @@ | ||
| /* | ||
| * Copyright (c) 2024-2025, NVIDIA CORPORATION. | ||
| * | ||
| * Licensed under the Apache License, Version 2.0 (the "License"); | ||
| * you may not use this file except in compliance with the License. | ||
| * You may obtain a copy of the License at | ||
| * | ||
| * http://www.apache.org/licenses/LICENSE-2.0 | ||
| * | ||
| * Unless required by applicable law or agreed to in writing, software | ||
| * distributed under the License is distributed on an "AS IS" BASIS, | ||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| * See the License for the specific language governing permissions and | ||
| * limitations under the License. | ||
| */ | ||
|
|
||
| #include <benchmarks/common/generate_input.hpp> | ||
| #include <benchmarks/fixture/benchmark_fixture.hpp> | ||
|
|
||
| #include <cudf/aggregation.hpp> | ||
| #include <cudf/rolling.hpp> | ||
| #include <cudf/sorting.hpp> | ||
| #include <cudf/types.hpp> | ||
| #include <cudf/utilities/default_stream.hpp> | ||
|
|
||
| #include <rmm/device_buffer.hpp> | ||
| #include <rmm/device_uvector.hpp> | ||
| #include <rmm/exec_policy.hpp> | ||
|
|
||
| #include <thrust/iterator/counting_iterator.h> | ||
|
|
||
| #include <nvbench/nvbench.cuh> | ||
|
|
||
| #include <algorithm> | ||
|
|
||
| template <typename Type> | ||
| void bench_row_fixed_rolling_sum(nvbench::state& state, nvbench::type_list<Type>) | ||
| { | ||
| auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows")); | ||
| auto const preceding_size = static_cast<cudf::size_type>(state.get_int64("preceding_size")); | ||
| auto const following_size = static_cast<cudf::size_type>(state.get_int64("following_size")); | ||
| auto const min_periods = static_cast<cudf::size_type>(state.get_int64("min_periods")); | ||
|
|
||
| data_profile const profile = data_profile_builder().cardinality(0).no_validity().distribution( | ||
| cudf::type_to_id<Type>(), distribution_id::UNIFORM, 0, 100); | ||
| auto vals = create_random_column(cudf::type_to_id<Type>(), row_count{num_rows}, profile); | ||
|
|
||
| auto req = cudf::make_sum_aggregation<cudf::rolling_aggregation>(); | ||
|
|
||
| auto const mem_stats_logger = cudf::memory_stats_logger(); | ||
| state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); | ||
| state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { | ||
| auto const result = | ||
| cudf::rolling_window(vals->view(), preceding_size, following_size, min_periods, *req); | ||
| }); | ||
| auto const elapsed_time = state.get_summary("nv/cold/time/gpu/mean").get_float64("value"); | ||
| state.add_element_count(static_cast<double>(num_rows) / elapsed_time / 1'000'000., "Mrows/s"); | ||
| state.add_buffer_size( | ||
| mem_stats_logger.peak_memory_usage(), "peak_memory_usage", "peak_memory_usage"); | ||
| } | ||
|
|
||
| template <typename Type> | ||
| void bench_row_variable_rolling_sum(nvbench::state& state, nvbench::type_list<Type>) | ||
| { | ||
| auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows")); | ||
| auto const preceding_size = static_cast<cudf::size_type>(state.get_int64("preceding_size")); | ||
| auto const following_size = static_cast<cudf::size_type>(state.get_int64("following_size")); | ||
|
|
||
| auto vals = [&]() { | ||
| data_profile const profile = data_profile_builder().cardinality(0).no_validity().distribution( | ||
| cudf::type_to_id<Type>(), distribution_id::UNIFORM, 0, 100); | ||
| return create_random_column(cudf::type_to_id<Type>(), row_count{num_rows}, profile); | ||
| }(); | ||
|
|
||
| auto preceding = [&]() { | ||
| auto data = std::vector<cudf::size_type>(num_rows); | ||
| auto it = thrust::make_counting_iterator<cudf::size_type>(0); | ||
| std::transform(it, it + num_rows, data.begin(), [num_rows, preceding_size](auto i) { | ||
| return std::min(i + 1, std::max(preceding_size, i + 1 - num_rows)); | ||
| }); | ||
| auto buf = rmm::device_buffer( | ||
| data.data(), num_rows * sizeof(cudf::size_type), cudf::get_default_stream()); | ||
| cudf::get_default_stream().synchronize(); | ||
| return std::make_unique<cudf::column>(cudf::data_type(cudf::type_to_id<cudf::size_type>()), | ||
| num_rows, | ||
| std::move(buf), | ||
| rmm::device_buffer{}, | ||
| 0); | ||
| }(); | ||
|
|
||
| auto following = [&]() { | ||
| auto data = std::vector<cudf::size_type>(num_rows); | ||
| auto it = thrust::make_counting_iterator<cudf::size_type>(0); | ||
| std::transform(it, it + num_rows, data.begin(), [num_rows, following_size](auto i) { | ||
| return std::max(-i - 1, std::min(following_size, num_rows - i - 1)); | ||
| }); | ||
| auto buf = rmm::device_buffer( | ||
| data.data(), num_rows * sizeof(cudf::size_type), cudf::get_default_stream()); | ||
| cudf::get_default_stream().synchronize(); | ||
| return std::make_unique<cudf::column>(cudf::data_type(cudf::type_to_id<cudf::size_type>()), | ||
| num_rows, | ||
| std::move(buf), | ||
| rmm::device_buffer{}, | ||
| 0); | ||
| }(); | ||
|
|
||
| auto req = cudf::make_sum_aggregation<cudf::rolling_aggregation>(); | ||
|
|
||
| auto const mem_stats_logger = cudf::memory_stats_logger(); | ||
| state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); | ||
| state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { | ||
| auto const result = | ||
| cudf::rolling_window(vals->view(), preceding->view(), following->view(), 1, *req); | ||
| }); | ||
| auto const elapsed_time = state.get_summary("nv/cold/time/gpu/mean").get_float64("value"); | ||
| state.add_element_count(static_cast<double>(num_rows) / elapsed_time / 1'000'000., "Mrows/s"); | ||
| state.add_buffer_size( | ||
| mem_stats_logger.peak_memory_usage(), "peak_memory_usage", "peak_memory_usage"); | ||
| } | ||
|
|
||
| NVBENCH_BENCH_TYPES(bench_row_fixed_rolling_sum, | ||
| NVBENCH_TYPE_AXES(nvbench::type_list<std::int32_t, double>)) | ||
| .set_name("row_fixed_rolling_sum") | ||
| .add_int64_power_of_two_axis("num_rows", {14, 22, 28}) | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. nit: Is there any reason for choice of these numbers of num_rows? or just random.
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Smallish, mediumish, and largeish. But other than that, not particularly attached to them. |
||
| .add_int64_axis("preceding_size", {1, 10, 100}) | ||
| .add_int64_axis("following_size", {2}) | ||
| .add_int64_axis("min_periods", {1, 20}); | ||
|
|
||
| NVBENCH_BENCH_TYPES(bench_row_variable_rolling_sum, | ||
| NVBENCH_TYPE_AXES(nvbench::type_list<std::int32_t, double>)) | ||
| .set_name("row_variable_rolling_sum") | ||
| .add_int64_power_of_two_axis("num_rows", {14, 22, 28}) | ||
| .add_int64_axis("preceding_size", {10, 100}) | ||
| .add_int64_axis("following_size", {2}); | ||
Uh oh!
There was an error while loading. Please reload this page.