Accelerate linear model predict on C-ordered inputs (#7329) #2584
build.yaml
on: push
cpp-build
/
compute-matrix
5s
wheel-build-libcuml
/
compute-matrix
5s
Matrix: cpp-build / build
Matrix: wheel-build-libcuml / build
wheel-publish-libcuml
/
wheels publish
3m 43s
Matrix: python-build / build
Matrix: wheel-build-cuml / build
upload-conda
/
upload
2m 28s
docs-build
/
build
5m 27s
wheel-publish-cuml
/
wheels publish
3m 4s
Artifacts
Produced during runtime
Name | Size | Digest | |
---|---|---|---|
cuml_conda_cpp_cuda12_aarch64
|
109 MB |
sha256:f5c690cbf4abde4d4ba3e7fb7ffc47a6f575d764a00bb23675e4f50deadfea8d
|
|
cuml_conda_cpp_cuda12_x86_64
|
109 MB |
sha256:3c7b32d8a225e60d7d271df1c3872ba2872c6d86dd7bd1f0fa1c3abef2b93271
|
|
cuml_conda_cpp_cuda13_aarch64
|
78.7 MB |
sha256:b02f9aca5c4e289136536949c186b798ef821d8f468e1be95e10b0f45b4642b3
|
|
cuml_conda_cpp_cuda13_x86_64
|
79.2 MB |
sha256:40f5360f14d54c786aeed283dd20fc3b26de571681f038f3d4d3554f9f54f9cb
|
|
cuml_conda_python_cuda12_py310_aarch64
|
3.43 MB |
sha256:ed17479558be368c74e3fa62b1831538e4d65dcda12ec3f14fe271649661c7d9
|
|
cuml_conda_python_cuda12_py310_x86_64
|
3.71 MB |
sha256:534abb6a9c726bebc3b9017eb8dffbcc97ddca4b90e3451bf2ee5149ab1ceaf3
|
|
cuml_conda_python_cuda12_py311_aarch64
|
3.66 MB |
sha256:d667f7844cefe8e327fc7ce23c152cb85be2c7d23a637d9ca91742a1b5a00472
|
|
cuml_conda_python_cuda12_py311_x86_64
|
3.94 MB |
sha256:f07343225f996140f664e8b20397cf8fe03b510e591c4264546243e6f606bfcb
|
|
cuml_conda_python_cuda12_py312_aarch64
|
3.5 MB |
sha256:5c13af910a3b63f923686456580d59baad27d56f0ec3a462f1fd1f4fee0f23bd
|
|
cuml_conda_python_cuda12_py312_x86_64
|
3.77 MB |
sha256:7a480512bb5f409a890529724ba5a97db6f9e903fbd1efc87d708106487464a4
|
|
cuml_conda_python_cuda12_py313_aarch64
|
3.52 MB |
sha256:0c32e5476aca2470d1d8055b67fccdcf3b1cb972fa705ca494cb45e081525e5a
|
|
cuml_conda_python_cuda12_py313_x86_64
|
3.81 MB |
sha256:b11828f54d710ddfdf2da1a6a5a752a90496c015b57433d676575b707a1c6848
|
|
cuml_conda_python_cuda13_py310_aarch64
|
3.43 MB |
sha256:fc5f0c1257902ad36fb059a2863569ef07a9b90c011197c223418e237dab6da1
|
|
cuml_conda_python_cuda13_py310_x86_64
|
3.71 MB |
sha256:53d65025b7bee353962990a39755d9c06c42cd171036f7fac6d2367576a82a08
|
|
cuml_conda_python_cuda13_py311_aarch64
|
3.66 MB |
sha256:7ba6b209213d4298f934c9da3e5f8b242f94c00fcbde8518d4ef22df0545870d
|
|
cuml_conda_python_cuda13_py311_x86_64
|
3.94 MB |
sha256:76183b49a4613b3a54b20561700851d2689a6ea1b7ba8dd376aa0679d764f96d
|
|
cuml_conda_python_cuda13_py312_aarch64
|
3.5 MB |
sha256:31c8b32e6e7df2b161773a0378d849750e9f3ab65af2e5162073306879e24cb7
|
|
cuml_conda_python_cuda13_py312_x86_64
|
3.77 MB |
sha256:d0f8c759df595e9a06b4efa60e5f2c36e727fdabc2fe8be917357529d2f79245
|
|
cuml_conda_python_cuda13_py313_aarch64
|
3.52 MB |
sha256:28d3f400348608bb3dd63fa738177d7c52f5904d4fbbc734f65323b8ed78568b
|
|
cuml_conda_python_cuda13_py313_x86_64
|
3.81 MB |
sha256:7d2026e754d6ce7676878848f09501fe36b663ccaa4c91644a589e9e10abd0a2
|
|
cuml_wheel_cpp_libcuml_cu12_aarch64
|
457 MB |
sha256:a5a8d39df2e17a6c84795e871ead4449fcf852a5b5ca8cf6ba1effd70eb814a3
|
|
cuml_wheel_cpp_libcuml_cu12_x86_64
|
459 MB |
sha256:77d8e546d26f187a8a2d803aac72d13dd789b721f21f38a58b1fef2935c13e1f
|
|
cuml_wheel_cpp_libcuml_cu13_aarch64
|
240 MB |
sha256:60bcd4f638643746ae4c19ae6bbfd81ac57cfc6a769fe103f00d1dffae5b01d5
|
|
cuml_wheel_cpp_libcuml_cu13_x86_64
|
242 MB |
sha256:b95b4d1df78609a8c4e2fb364b05345c7cbd41f9e8155de96bfe1eb4ea9e7f0c
|
|
cuml_wheel_python_cuml_cu12_py310_aarch64
|
6.44 MB |
sha256:9b483b719828bf1702476db7c90d42803cab9e84ec588ebe7b2e48130dbc4b0c
|
|
cuml_wheel_python_cuml_cu12_py310_x86_64
|
6.86 MB |
sha256:e5426920cc7d6c7b64398d184d857dbb59d22e299e2ac7f193d09934c5b71253
|
|
cuml_wheel_python_cuml_cu12_py311_aarch64
|
6.49 MB |
sha256:d330a646952e18bde38b8044a1234aa814cb39861aaeabd28fe7881bae7193d6
|
|
cuml_wheel_python_cuml_cu12_py311_x86_64
|
6.92 MB |
sha256:5a727316995c4902634f701028505f7da00d8446da60bcf3cb7ad8fa7b3581a3
|
|
cuml_wheel_python_cuml_cu12_py312_aarch64
|
6.34 MB |
sha256:b07e86c1f72aedcdea463a5d20b56402af4641afa50a3cf4b1235ceb6a23db2c
|
|
cuml_wheel_python_cuml_cu12_py312_x86_64
|
6.78 MB |
sha256:ca122ce98d7585b960542e71538c196c646c6bdd8ef019b1f14adc3f352ba4cb
|
|
cuml_wheel_python_cuml_cu12_py313_aarch64
|
6.32 MB |
sha256:d92dc63a1a082b19cf8b14b30bf0952861cce349ee11d319265abc5c31779bff
|
|
cuml_wheel_python_cuml_cu12_py313_x86_64
|
6.76 MB |
sha256:5ff73dfc2b35494bce70270663e76d25f0e7e9d84575564044e435a90fbb483b
|
|
cuml_wheel_python_cuml_cu13_py310_aarch64
|
6.37 MB |
sha256:09bb41d31bd0e54fd8d70c7ccc03dd5b7a53e79407fac1ff006162d0b6ca09e3
|
|
cuml_wheel_python_cuml_cu13_py310_x86_64
|
6.8 MB |
sha256:94fae0e949e141c2d38cc42a8eaf4e6dddbbbc02ae4fabec8bfe631a77f00e75
|
|
cuml_wheel_python_cuml_cu13_py311_aarch64
|
6.42 MB |
sha256:385aee1222f10028c689dbe1cc65496d0d24eec12045a94b9cf1667de0206807
|
|
cuml_wheel_python_cuml_cu13_py311_x86_64
|
6.85 MB |
sha256:27b29ebb96367ef22e2b46ca59aada05608c8c56dc2edd6167f30b71046ac57e
|
|
cuml_wheel_python_cuml_cu13_py312_aarch64
|
6.27 MB |
sha256:dad4437cf959396056cbffba8411e87249351a46300783a0320920e64b68e919
|
|
cuml_wheel_python_cuml_cu13_py312_x86_64
|
6.72 MB |
sha256:abd552e5ada309fe77f56a68ddd4d0bd1a5dec9a869a995f0944df61ce6c31b2
|
|
cuml_wheel_python_cuml_cu13_py313_aarch64
|
6.25 MB |
sha256:5d5cbf388fa8c4a6b27ea3c7122ac232ad85241543077fbd789cfebeb0e0a424
|
|
cuml_wheel_python_cuml_cu13_py313_x86_64
|
6.7 MB |
sha256:31c65386654feb809889c513212f0392ec47ff5026caf80edf8ba34018304c24
|
|