⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⣿⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣶⣧⣄⣉⣉⣠⣼⣶⣤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⢰⣿⣿⣿⣿⡿⣿⣿⣿⣿⢿⣿⣿⣿⣿⡆⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⣼⣤⣤⣈⠙⠳⢄⣉⣋⡡⠞⠋⣁⣤⣤⣧⠀⠀⠀⠀⠀⠀⠀
⠀⢲⣶⣤⣄⡀⢀⣿⣄⠙⠿⣿⣦⣤⡿⢿⣤⣴⣿⠿⠋⣠⣿⠀⢀⣠⣤⣶⡖⠀
⠀⠀⠙⣿⠛⠇⢸⣿⣿⡟⠀⡄⢉⠉⢀⡀⠉⡉⢠⠀⢻⣿⣿⡇⠸⠛⣿⠋⠀⠀
⠀⠀⠀⠘⣷⠀⢸⡏⠻⣿⣤⣤⠂⣠⣿⣿⣄⠑⣤⣤⣿⠟⢹⡇⠀⣾⠃⠀⠀⠀
⠀⠀⠀⠀⠘⠀⢸⣿⡀⢀⠙⠻⢦⣌⣉⣉⣡⡴⠟⠋⡀⢀⣿⡇⠀⠃⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⢸⣿⣧⠈⠛⠂⠀⠉⠛⠛⠉⠀⠐⠛⠁⣼⣿⡇⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠸⣏⠀⣤⡶⠖⠛⠋⠉⠉⠙⠛⠲⢶⣤⠀⣹⠇⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⣿⣶⣿⣿⣿⣿⣿⣿⣶⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠉⠉⠛⠛⠛⠛⠉⠉⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀
OrcBench generates a workload trace which can be consumed by serverless platforms to test their service. The models used by OrcBench are modeled off of Microsoft Azure and whos creation is outlined in our paper (referenced below).
pip install orcbench
orcbench trace
OR
python3 -m orcbench trace
This will produce a standard trace (25% that of the original Microsoft
Workload, --scale 0.25
). nd produces jobs which will sample for 10 models
(--N 10
). With a runtime (--runtime 30
) of 30 minutes. The seed (--seed
)
can be optionally set to produce deterministic workloads. The outputted
(--out
) trace is by default sent to trace.out
.
If you use this benchmark please make sure to cite us using the following citation
PDF of the paper can be found - OrcBench: A Representative Serverless Benchmark
@inproceedings{hancock:benchmarking,
author = {Ryan Hancock and
Sreeharsha Udayashankar and
Ali José Mashtizadeh and
Samer Al-Kiswany},
title = {OrcBench: A Representative Serverless Benchmark},
booktitle = {Proceedings of the15th International Conference on Cloud Computing (CLOUD'22)}
publisher = {{IEEE}},
year = {2022},
doi = {10.1109/CLOUD55607.2022.00028},
}