keras3 1.1.0
-
Fixed issue where GPUs would not be found when running on Windows under WSL Linux.
(reported in #1456, fixed in #1459) -
keras_shape
objects (as returned bykeras3::shape()
) gain==
and!=
methods. -
Fixed warning from
tfruns::training_run()
being unable to log optimizer learning rate. -
Added compatibility with Keras v3.4.1 (no R user facing changes).
-
Added compatibility with Keras v3.4.0. User facing changes:
-
New functions:
op_argpartition()
op_map()
op_scan()
op_switch()
op_dtype()
op_lstsq()
op_image_hsv_to_rgb()
op_image_rgb_to_hsv()
-
Changes:
- Added support for arbitrary, deeply nested input/output structures in
Functional models (e.g. lists of lists of lists of inputs or outputs...) - Add support for
optional
Functional inputs.keras_input()
gains anoptional
argument.keras_model_sequential()
gains ainput_optional
argument.
- Add support for
float8
inference forDense
andEinsumDense
layers. - Enable
layer_feature_space()
to be used in a{tfdatasets}
pipeline even
when the backend isn't TensorFlow. layer_string_lookup()
can now taketf$SparseTensor()
as input.layer_string_lookup()
returns"int64"
dtype by default in more modes now.Layer()
instances gain attributespath
andquantization_mode
.Metric()$variables
is now recursive.- Add
training
argument toModel$compute_loss()
. split_dataset()
now supports nested structures in dataset.- All applications gain a
name
argument, accept a custom name. layer_multi_head_attention()
gains aseed
argument.- All losses gain a
dtype
argument. loss_dice()
gains anaxis
argument.op_ctc_decode()
, new default formask_index = 0
- All
op_image_*
functions now use defaultdata_format
value
toconfig_image_data_format()
op_isclose()
gains argumentsrtol
,atol
,equal_nan
.save_model()
gains argumentzipped
.- Bugs fixes and performance improvements.
- Added support for arbitrary, deeply nested input/output structures in
-