Skip to content

keras 2.11.0

Compare
Choose a tag to compare
@t-kalinowski t-kalinowski released this 20 Dec 15:38
  • Default TensorFlow version installed by install_keras() is now 2.11.

  • All optimizers have been updated for Keras/TensorFlow version 2.11.
    Arguments to all the optimizers have changed. To access the previous
    optimizer implementations, use the constructors available at
    keras$optimizers$legacy. For example, use keras$optimizers$legacy$Adam()
    for the previous implementation of optimizer_adam().

  • New optimizer optimizer_frtl().

  • updates to layers:

    • layer_attention() gains score_mode and dropout arguments.
    • layer_discretization() gains output_mode and sparse arguments.
    • layer_gaussian_dropout() and layer_gaussian_noise() gain a seed argument.
    • layer_hashing() gains output_mode and sparse arguments.
    • layer_integer_lookup() gains vocabulary_dtype and idf_weights arguments.
    • layer_normalization() gains an invert argument.
    • layer_string_lookup() gains an idf_weights argument.
  • Fixed issue where input_shape supplied to custom layers defined with new_layer_class()
    would result in an error (#1338)

  • New callback_backup_and_restore(), for resuming an interrupted fit() call.

  • The merging family of layers (layer_add, layer_concatenate, etc.) gain the ability
    to accept layers in ..., allowing for easier composition of residual blocks with the pipe %>%.
    e.g. something like this now works:

    block_1_output <- ...
    block_2_output <- block_1_output %>% 
      layer_conv_2d(64, 3, activation = "relu", padding = "same") %>% 
      layer_add(block_1_output)
  • model$get_config() method now returns an R object that can be safely serialized
    to rds.

  • keras_array() now reflects unconverted Python objects. This enables passing
    objects like pandas.Series() to fit() and evaluate() methods. (#1341)