Pair is the canonical product type: a value of type Pair a b
always
contains exactly two values: one of type a
; one of type b
.
Pair a b
satisfies the following Fantasy Land specifications:
> const Useless = require ('sanctuary-useless')
> const isTypeClass = x =>
. type (x) === 'sanctuary-type-classes/TypeClass@1'
> S.map (k => k + ' '.repeat (16 - k.length) +
. (Z[k].test (Pair (Useless) (Useless)) ? '\u2705 ' :
. Z[k].test (Pair (['foo']) (['bar'])) ? '\u2705 * ' :
. /* otherwise */ '\u274C '))
. (S.keys (S.unchecked.filter (isTypeClass) (Z)))
[ 'Setoid ✅ * ', // if ‘a’ and ‘b’ satisfy Setoid
. 'Ord ✅ * ', // if ‘a’ and ‘b’ satisfy Ord
. 'Semigroupoid ✅ ',
. 'Category ❌ ',
. 'Semigroup ✅ * ', // if ‘a’ and ‘b’ satisfy Semigroup
. 'Monoid ❌ ',
. 'Group ❌ ',
. 'Filterable ❌ ',
. 'Functor ✅ ',
. 'Bifunctor ✅ ',
. 'Profunctor ❌ ',
. 'Apply ✅ * ', // if ‘a’ satisfies Semigroup
. 'Applicative ❌ ',
. 'Chain ✅ * ', // if ‘a’ satisfies Semigroup
. 'ChainRec ❌ ',
. 'Monad ❌ ',
. 'Alt ❌ ',
. 'Plus ❌ ',
. 'Alternative ❌ ',
. 'Foldable ✅ ',
. 'Traversable ✅ ',
. 'Extend ✅ ',
. 'Comonad ✅ ',
. 'Contravariant ❌ ' ]
Pair's sole data constructor. Additionally, it serves as the Pair type representative.
> Pair (1) (2)
Pair (1) (2)
fst (Pair (x) (y))
is equivalent to x
.
> Pair.fst (Pair ('abc') ([1, 2, 3]))
'abc'
snd (Pair (x) (y))
is equivalent to y
.
> Pair.snd (Pair ('abc') ([1, 2, 3]))
[1, 2, 3]
swap (Pair (x) (y))
is equivalent to Pair (y) (x)
.
> Pair.swap (Pair ('abc') ([1, 2, 3]))
Pair ([1, 2, 3]) ('abc')
show (Pair (x) (y))
is equivalent to
'Pair (' + show (x) + ') (' + show (y) + ')'
.
> show (Pair ('abc') ([1, 2, 3]))
'Pair ("abc") ([1, 2, 3])'
Pair (x) (y)
is equal to Pair (v) (w)
iff x
is equal to v
and y
is equal to w
according to Z.equals
.
> S.equals (Pair ('abc') ([1, 2, 3])) (Pair ('abc') ([1, 2, 3]))
true
> S.equals (Pair ('abc') ([1, 2, 3])) (Pair ('abc') ([3, 2, 1]))
false
Pair (x) (y)
is less than or equal to Pair (v) (w)
iff x
is
less than v
or x
is equal to v
and y
is less than or equal to
w
according to Z.lte
.
> S.filter (S.lte (Pair ('b') (2)))
. ([Pair ('a') (1), Pair ('a') (2), Pair ('a') (3),
. Pair ('b') (1), Pair ('b') (2), Pair ('b') (3),
. Pair ('c') (1), Pair ('c') (2), Pair ('c') (3)])
[ Pair ('a') (1),
. Pair ('a') (2),
. Pair ('a') (3),
. Pair ('b') (1),
. Pair ('b') (2) ]
compose (Pair (x) (y)) (Pair (v) (w))
is equivalent to Pair (v) (y)
.
> S.compose (Pair ('a') (0)) (Pair ([1, 2, 3]) ('b'))
Pair ([1, 2, 3]) (0)
concat (Pair (x) (y)) (Pair (v) (w))
is equivalent to
Pair (concat (x) (v)) (concat (y) (w))
.
> S.concat (Pair ('abc') ([1, 2, 3])) (Pair ('xyz') ([4, 5, 6]))
Pair ('abcxyz') ([1, 2, 3, 4, 5, 6])
map (f) (Pair (x) (y))
is equivalent to Pair (x) (f (y))
.
> S.map (Math.sqrt) (Pair ('abc') (256))
Pair ('abc') (16)
bimap (f) (g) (Pair (x) (y))
is equivalent to Pair (f (x)) (g (y))
.
> S.bimap (S.toUpper) (Math.sqrt) (Pair ('abc') (256))
Pair ('ABC') (16)
ap (Pair (v) (f)) (Pair (x) (y))
is equivalent to
Pair (concat (v) (x)) (f (y))
.
> S.ap (Pair ('abc') (Math.sqrt)) (Pair ('xyz') (256))
Pair ('abcxyz') (16)
chain (f) (Pair (x) (y))
is equivalent to
Pair (concat (x) (fst (f (y)))) (snd (f (y)))
.
> S.chain (n => Pair (show (n)) (Math.sqrt (n))) (Pair ('abc') (256))
Pair ('abc256') (16)
reduce (f) (x) (Pair (v) (w))
is equivalent to f (x) (w)
.
> S.reduce (S.concat) ([1, 2, 3]) (Pair ('abc') ([4, 5, 6]))
[1, 2, 3, 4, 5, 6]
traverse (_) (f) (Pair (x) (y))
is equivalent to
map (Pair (x)) (f (y))
.
> S.traverse (Array) (S.words) (Pair (123) ('foo bar baz'))
[Pair (123) ('foo'), Pair (123) ('bar'), Pair (123) ('baz')]
extend (f) (Pair (x) (y))
is equivalent to
Pair (x) (f (Pair (x) (y)))
.
> S.extend (S.reduce (S.add) (1)) (Pair ('abc') (99))
Pair ('abc') (100)
extract (Pair (x) (y))
is equivalent to y
.
> S.extract (Pair ('abc') ([1, 2, 3]))
[1, 2, 3]