televid.py
: Provide the basic model for identification of single wave file.run_through.py
: Only for automatically test every mp3 and wave file in./test_audio
folder.run_televid_example.py
: The example for using the Televid model intelevid.py
./golden_wav
: The folder contains wave files to generate golden patterns for matching. Thegolden_ptns.pkl
file in it is to speed up the loading (if exists)./python_speech_features
: The package for MFCC feature.
- In Busy
- Original Texts
- 您所撥的電話忙線中,請稍後再撥。 The number you have dial is busy. Please try again later.
- Keywords
- 忙線中
- Original Texts
- No Response
- Original Texts
- 您所撥的電話無人回應。
- 您所撥的電話無法接聽,請稍後再撥。The number you has dial is not available. Please try again later.
- Keywords
- 回應
- 接聽
- Original Texts
- Voice Mail
- Original Texts
- 您的電話將轉接到語音信箱,嘟聲後開始計費,如不留言請掛斷。快速留言嘟聲後請按#字鍵這是09XX-XXXXXX的信箱,嗶聲後請留言。
- 轉接語音信箱,嘟聲後開始計費,如不留言請掛斷。快速留言嘟聲後請按 * 字鍵。您已進入09XX-XXXXXX的信箱,嗶聲後請留言。
- 嘟聲後開始計費,如不留言請掛斷。快速留言嘟聲後請按 * 字鍵。您已進入09XX-XXXXXX的信箱,嗶聲後請留言。
- 您的電話將轉接到語音信箱,嘟聲後開始計費,如不留言請掛斷。快速留言嘟聲後請按一次 * 字鍵。
- Keywords
- 語音信箱
- 嘟聲後
- Original Texts
The file is generated by calling save_mfcc_training_dataset()
of TestTelevid
object.
Is the pickle, Python object serialization, object. You should use
pickle.loads()
to open it.
A list contains multiple tuples, and being one data input, each tuple contains two variables: difference indices dictionary (input) and the final outcome (desire output). The following is the example structure.
[
(
{'in_busy.wav': 285.38331120979802,
'no_response_A.wav': 3430.9011939973934,
'no_response_B.wav': 2380.5107159615013,
'voice_mail_A_1.wav': 3118.0131102683249,
'voice_mail_A_2.wav': 2543.842005054099,
'voice_mail_B.wav': 3217.5192698396595,
'voice_mail_C.wav': 3176.1896581534188,
'voice_mail_D_1.wav': 2749.3900560206898,
'voice_mail_D_2.wav': 2634.9694942389929},
'inbusy'),
(
{'in_busy.wav': 2306.9580628421327,
'no_response_A.wav':3727.4782066043199,
'no_response_B.wav': 2987.7147191635795,
'voice_mail_A_1.wav': 2345.7121554450459,
'voice_mail_A_2.wav': 2477.9789650889234,
'voice_mail_B.wav': 328.95530907943493,
'voice_mail_C.wav': 332.53955702325237,
'voice_mail_D_1.wav': 2714.4307011467545,
'voice_mail_D_2.wav': 1705.1556381267567},
'voicemail')]
The input of the trained module must be a dict()
and then return the
classified result.
SciPy>=1.1.0
pip install scipy
NumPy>=1.15.0
pip install numpy
FFmpeg-Python>=0.1.16
pip install ffmpeg-python
FFmpeg (for the FFmpeg-Python package)
apt-get install ffmpeg