Skip to content

This Problem is based on a Image Data set consisting of different types of weeds, to detect them in crops and fields. I have used Deep Learning Model called CNN(Convolutional Neural Networks) with Dropout, Batch Normalization, ReduceLearning rate on plateau, Early stoppig rounds, and Transposd Convolutional Neural Networks.

License

Notifications You must be signed in to change notification settings

sharmaroshan/Weed-Detection

Repository files navigation

Weed-Detection

This Problem is based on a Image Data set consisting of different types of weeds, to detect them in crops and fields. I have used Deep Learning Model called CNN(Convolutional Neural Networks) with Dropout, Batch Normalization, ReduceLearning rate on plateau, Early stoppig rounds, and Transposd Convolutional Neural Networks.

About

This Problem is based on a Image Data set consisting of different types of weeds, to detect them in crops and fields. I have used Deep Learning Model called CNN(Convolutional Neural Networks) with Dropout, Batch Normalization, ReduceLearning rate on plateau, Early stoppig rounds, and Transposd Convolutional Neural Networks.

Topics

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published