🌎 Website • 📄 Paper • 🎬 Video (3-min) • Colab notebook
-
Install Git LFS.
-
Clone repository and
cd
into it.git clone --recursive https://github.com/siddancha/diffunc.git cd /path/to/diffunc
-
Install
mamba
by following the official install instructions. -
Create a mamba environment with Python 3.10.
mamba create -n DUMamba python==3.10
-
Activate mamba environment
mamba activate DUMamba
-
Install CUDA in the mamba environment.
mamba install -c nvidia/label/cuda-12.4.0 cuda
Make sure CUDA is installed by running
nvcc --version
. You should see some output saying that you have CUDA 12.4 installed. -
Create a new Python virtual environment
python3 -m venv .venv --prompt=DUVenv
-
Activate the virtual environment
source .venv/bin/activate
-
Install pdm
pip install pdm
-
Install Python dependencies via pdm.
pdm install -v
- On MIT Supercloud, you may need to run this:
or add
TORCH_CUDA_ARCH_LIST="5.2 6.0 6.1 7.0 7.5 8.0 8.6+PTX" pdm install -v
export TORCH_CUDA_ARCH_LIST="5.2 6.0 6.1 7.0 7.5 8.0 8.6+PTX"
to your.bashrc
.
- On MIT Supercloud, you may need to run this:
-
Create the following symlink for
featup
:ln -s `pwd`/.venv/lib/python3.10/site-packages/clip/bpe_simple_vocab_16e6.txt.gz .venv/lib/python3.10/site-packages/featup/featurizers/maskclip/
-
Create a folder (or symlinked folder) called
data
inside thediffunc
repo.mkdir data
-
Download the RUGD dataset.
-
Unzip the downloaded files and structure the dataset as follows:
data/RUGD ├── RUGD_frames-with-annotations ├── creek, park-1, etc. -- folders for each scene containing ".png" files from the RGB camera. ├── RUGD_annotations ├── creek, park-1, etc. -- folders for each scene containing ".png" label color images, colored using the class palette. ├── RUGD_annotation-colormap.txt -- mapping containing a list of class id, class name and class color.
-
Run the dataset conversion scripts.
./scripts/make_ddpm_train_set_rugd_full.py ./scripts/make_ddpm_train_set_rugd_trail_trail_15.py
Click here to expand
- To build the docker image under the
ppc64le
platform:docker build --platform ppc64le --tag jammy-python .
- To run the docker container:
docker run --rm -i -t --platform ppc64le \ -v /home/sancha/container/envs:/root/envs \ -v /home/sancha/repos:/root/repos \ jammy-python:latest /bin/bash