Skip to content

Commit

Permalink
Merge pull request #499 from spsanderson/development
Browse files Browse the repository at this point in the history
Fixes #475
  • Loading branch information
spsanderson authored May 15, 2024
2 parents 18955c4 + d73ea77 commit babf3e4
Show file tree
Hide file tree
Showing 189 changed files with 1,260 additions and 2 deletions.
3 changes: 3 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -117,6 +117,9 @@ export(util_geometric_stats_tbl)
export(util_hypergeometric_aic)
export(util_hypergeometric_param_estimate)
export(util_hypergeometric_stats_tbl)
export(util_inverse_burr_aic)
export(util_inverse_burr_param_estimate)
export(util_inverse_burr_stats_tbl)
export(util_inverse_pareto_aic)
export(util_inverse_pareto_param_estimate)
export(util_inverse_pareto_stats_tbl)
Expand Down
3 changes: 3 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,9 @@ Add function `util_inverse_weibull_stats_tbl()` to create a summary table of the
11. Fix #476 - Add function `util_inverse_pareto_param_estimate()` to estimate the parameters of the Inverse Pareto distribution.
Add function `util_inverse_pareto_aic()` to calculate the AIC for the Inverse Pareto distribution.
Add Function `util_inverse_pareto_stats_tbl()` to create a summary table of the Inverse Pareto distribution.
12. Fix #475 - Add function `util_inverse_burr_param_estimate()` to estimate the parameters of the Inverse Gamma distribution.
Add function `util_inverse_burr_aic()` to calculate the AIC for the Inverse Gamma distribution.
Add function `util_inverse_burr_stats_tbl()` to create a summary table of the Inverse Gamma distribution.

## Minor Improvements and Fixes
1. Fix #468 - Update `util_negative_binomial_param_estimate()` to add the use of
Expand Down
132 changes: 132 additions & 0 deletions R/est-param-inv-burr.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
#' Estimate Inverse Burr Parameters
#'
#' @family Parameter Estimation
#' @family Inverse Burr
#'
#' @details This function will see if the given vector `.x` is a numeric vector.
#' It will attempt to estimate the shape1, shape2, and rate parameters of an inverse
#' Burr distribution.
#'
#' @description This function will attempt to estimate the inverse Burr shape1, shape2, and rate parameters
#' given some vector of values `.x`. The function will return a list output by default,
#' and if the parameter `.auto_gen_empirical` is set to `TRUE` then the empirical
#' data given to the parameter `.x` will be run through the `tidy_empirical()`
#' function and combined with the estimated inverse Burr data.
#'
#' @param .x The vector of data to be passed to the function. Must be non-negative
#' integers.
#' @param .auto_gen_empirical This is a boolean value of TRUE/FALSE with default
#' set to TRUE. This will automatically create the `tidy_empirical()` output
#' for the `.x` parameter and use the `tidy_combine_distributions()`. The user
#' can then plot out the data using `$combined_data_tbl` from the function output.
#'
#' @examples
#' library(dplyr)
#' library(ggplot2)
#'
#' set.seed(123)
#' tb <- tidy_burr(.shape1 = 1, .shape2 = 2, .rate = .3) |> pull(y)
#' output <- util_inverse_burr_param_estimate(tb)
#'
#' output$parameter_tbl
#'
#' output$combined_data_tbl |>
#' tidy_combined_autoplot()
#'
#' @return
#' A tibble/list
#'
#' @export
#'

util_inverse_burr_param_estimate <- function(.x, .auto_gen_empirical = TRUE) {

# Tidyeval ----
x_term <- as.numeric(.x)
n <- length(x_term)

# Checks ----
if (!is.vector(x_term, mode = "numeric")) {
rlang::abort(
message = "The '.x' term must be a numeric vector.",
use_cli_format = TRUE
)
}

if (any(x_term < 0)) {
rlang::abort(
message = "All values of '.x' must be non-negative integers greater than 0.",
use_cli_format = TRUE
)
}

if (n < 2) {
rlang::abort(
message = "You must supply at least two data points for this function.",
use_cli_format = TRUE
)
}

# Negative log-likelihood function for inverse Burr distribution
invburr_lik <- function(params, data) {
shape1 <- params[1]
shape2 <- params[2]
scale <- params[3]
-sum(actuar::dinvburr(data, shape1 = shape1, shape2 = shape2, scale = scale, log = TRUE))
}

# Initial parameter guesses
initial_params <- c(shape1 = 1, shape2 = 1, scale = 1)

# Optimize to minimize the negative log-likelihood
opt_result <- stats::optim(
par = initial_params,
fn = invburr_lik,
data = x_term,
method = "L-BFGS-B",
lower = c(1e-5, 1e-5, 1e-5)
)

shape1 <- opt_result$par[1]
shape2 <- opt_result$par[2]
scale <- opt_result$par[3]
rate <- 1 / scale

# Return Tibble ----
if (.auto_gen_empirical) {
te <- tidy_empirical(.x = x_term)
td <- tidy_burr(.n = n, .shape1 = round(shape1, 3), .shape2 = round(shape2, 3), .rate = round(rate, 3))
combined_tbl <- tidy_combine_distributions(te, td)
}

ret <- dplyr::tibble(
dist_type = "Inverse Burr",
samp_size = n,
min = min(x_term),
max = max(x_term),
mean = mean(x_term),
shape1 = shape1,
shape2 = shape2,
rate = rate,
scale = scale
)

# Return ----
attr(ret, "tibble_type") <- "parameter_estimation"
attr(ret, "family") <- "inverse_burr"
attr(ret, "x_term") <- .x
attr(ret, "n") <- n

if (.auto_gen_empirical) {
output <- list(
combined_data_tbl = combined_tbl,
parameter_tbl = ret
)
} else {
output <- list(
parameter_tbl = ret
)
}

return(output)
}
88 changes: 88 additions & 0 deletions R/stats-inv-burr-tbl.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
#' Distribution Statistics
#'
#' @family Inverse Burr
#' @family Distribution Statistics
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @details This function will take in a tibble and returns the statistics
#' of the given type of `tidy_` distribution. It is required that data be
#' passed from a `tidy_` distribution function.
#'
#' @description Returns distribution statistics in a tibble.
#'
#' @param .data The data being passed from a `tidy_` distribution function.
#'
#' @examples
#' library(dplyr)
#'
#' set.seed(123)
#' tidy_inverse_burr() |>
#' util_inverse_burr_stats_tbl() |>
#' glimpse()
#'
#' @return
#' A tibble
#'
#' @name util_inverse_burr_stats_tbl
NULL

#' @export
#' @rdname util_inverse_burr_stats_tbl

util_inverse_burr_stats_tbl <- function(.data) {

# Immediate check for tidy_ distribution function
if (!"tibble_type" %in% names(attributes(.data))) {
rlang::abort(
message = "You must pass data from the 'tidy_dist' function.",
use_cli_format = TRUE
)
}

if (attributes(.data)$tibble_type != "tidy_inverse_burr") {
rlang::abort(
message = "You must use 'tidy_inverse_burr()'",
use_cli_format = TRUE
)
}

# Data
data_tbl <- dplyr::as_tibble(.data)

atb <- attributes(data_tbl)
s1 <- atb$.shape1
s2 <- atb$.shape2
r <- atb$.rate
sc <- 1/r

stat_mean <- ifelse(s1 <= 1, Inf, sc * gamma(1 - 1/s1) * gamma(s2 + 1/s1) / gamma(s2))
stat_mode <- sc * ((s2 - 1)/(s1 * s2 + 1))^(1/s2)
stat_median <- sc * actuar::qinvburr(0.5, shape1 = s1, shape2 = s2, scale = sc)
stat_var <- ifelse(s1 <= 2, Inf, sc^2 * (gamma(1 - 2/s1) * gamma(s2 + 2/s1) / gamma(s2) - (gamma(1 - 1/s1) * gamma(s2 + 1/s1) / gamma(s2))^2))
stat_skewness <- ifelse(s1 <= 3, "undefined", (2 * (gamma(1 - 1/s1)^3 * gamma(s2 + 1/s1)^3 - 3 * gamma(1 - 1/s1) * gamma(1 - 2/s1) * gamma(s2 + 1/s1) * gamma(s2 + 2/s1) + gamma(1 - 3/s1) * gamma(s2 + 3/s1)) / (gamma(1 - 1/s1) * gamma(s2 + 1/s1) - gamma(1 - 2/s1) * gamma(s2 + 2/s1))^(3/2)))
stat_kurtosis <- ifelse(s1 <= 4, "undefined", (gamma(1 - 4/s1) * gamma(s2 + 4/s1) - 4 * gamma(1 - 3/s1) * gamma(s2 + 3/s1) * gamma(1 - 1/s1) * gamma(s2 + 1/s1) + 6 * gamma(1 - 2/s1) * gamma(s2 + 2/s1) * gamma(1 - 1/s1)^2 * gamma(s2 + 1/s1)^2 - 3 * gamma(1 - 2/s1)^2 * gamma(s2 + 2/s1)^2) / (gamma(1 - 1/s1) * gamma(s2 + 1/s1) - gamma(1 - 2/s1) * gamma(s2 + 2/s1))^2)

# Data Tibble
ret <- dplyr::tibble(
tidy_function = atb$tibble_type,
function_call = atb$dist_with_params,
distribution = dist_type_extractor(atb$tibble_type),
distribution_type = atb$distribution_family_type,
points = atb$.n,
simulations = atb$.num_sims,
mean = stat_mean,
mode = stat_mode,
median = stat_median,
coeff_var = sqrt(stat_var)/stat_mean,
skewness = stat_skewness,
kurtosis = stat_kurtosis,
computed_std_skew = tidy_skewness_vec(data_tbl$y),
computed_std_kurt = tidy_kurtosis_vec(data_tbl$y),
ci_lo = ci_lo(data_tbl$y),
ci_hi = ci_hi(data_tbl$y)
)

# Return
return(ret)
}
81 changes: 81 additions & 0 deletions R/utils-aic-inv-burr.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
#' Calculate Akaike Information Criterion (AIC) for Inverse Burr Distribution
#'
#' This function calculates the Akaike Information Criterion (AIC) for an inverse Burr
#' distribution fitted to the provided data.
#'
#' @family Utility
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @description
#' This function estimates the shape1, shape2, and rate parameters of an inverse Burr distribution
#' from the provided data using maximum likelihood estimation,
#' and then calculates the AIC value based on the fitted distribution.
#'
#' @param .x A numeric vector containing the data to be fitted to an inverse Burr distribution.
#'
#' @details
#' This function fits an inverse Burr distribution to the provided data using maximum
#' likelihood estimation. It estimates the shape1, shape2, and rate parameters
#' of the inverse Burr distribution using maximum likelihood estimation. Then, it
#' calculates the AIC value based on the fitted distribution.
#'
#' Initial parameter estimates: The function uses the method of moments estimates
#' as starting points for the shape1, shape2, and rate parameters of the inverse Burr distribution.
#'
#' Optimization method: The function uses the optim function for optimization.
#' You might explore different optimization methods within optim for potentially
#' better performance.
#'
#' Goodness-of-fit: While AIC is a useful metric for model comparison, it's recommended
#' to also assess the goodness-of-fit of the chosen model using visualization
#' and other statistical tests.
#'
#' @examples
#' # Example 1: Calculate AIC for a sample dataset
#' set.seed(123)
#' x <- tidy_inverse_burr(100, .shape1 = 2, .shape2 = 3, .scale = 1)[["y"]]
#' util_inverse_burr_aic(x)
#'
#' @return
#' The AIC value calculated based on the fitted inverse Burr distribution to the provided data.
#'
#' @name util_inverse_burr_aic
NULL

#' @export
#' @rdname util_inverse_burr_aic
util_inverse_burr_aic <- function(.x) {
# Tidyeval
x <- as.numeric(.x)

# Negative log-likelihood function for inverse Burr distribution
neg_log_lik_invburr <- function(par, data) {
shape1 <- par[1]
shape2 <- par[2]
scale <- par[3]
-sum(actuar::dinvburr(data, shape1 = shape1, shape2 = shape2, scale = scale, log = TRUE))
}

# Initial parameter estimates
initial_params <- c(shape1 = 1, shape2 = 1, scale = 1)

# Fit inverse Burr distribution using optim
fit_invburr <- stats::optim(
par = initial_params,
fn = neg_log_lik_invburr,
data = x,
method = "L-BFGS-B",
lower = c(1e-5, 1e-5, 1e-5)
)

# Extract log-likelihood and number of parameters
logLik_invburr <- -fit_invburr$value
k_invburr <- 3 # Number of parameters for inverse Burr distribution (shape1, shape2, and scale)

# Calculate AIC
AIC_invburr <- 2 * k_invburr - 2 * logLik_invburr

# Return AIC
return(AIC_invburr)
}
1 change: 1 addition & 0 deletions docs/news/index.html

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion docs/pkgdown.yml
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ pkgdown: 2.0.9
pkgdown_sha: ~
articles:
getting-started: getting-started.html
last_built: 2024-05-15T16:21Z
last_built: 2024-05-15T18:03Z
urls:
reference: https://www.spsanderson.com/TidyDensity/reference
article: https://www.spsanderson.com/TidyDensity/articles
Expand Down
1 change: 1 addition & 0 deletions docs/reference/check_duplicate_rows.html

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

1 change: 1 addition & 0 deletions docs/reference/convert_to_ts.html

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

15 changes: 15 additions & 0 deletions docs/reference/index.html

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Loading

0 comments on commit babf3e4

Please sign in to comment.