About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Copy values from one complex double-precision floating-point vector to another complex double-precision floating-point vector.
npm install @stdlib/blas-base-zcopy
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var zcopy = require( '@stdlib/blas-base-zcopy' );
Copies values from x
into y
.
var Complex128Array = require( '@stdlib/array-complex128' );
var real = require( '@stdlib/complex-float64-real' );
var imag = require( '@stdlib/complex-float64-imag' );
var x = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Complex128Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
zcopy( x.length, x, 1, y, 1 );
var z = y.get( 0 );
// returns <Complex128>
var re = real( z );
// returns 1.0
var im = imag( z );
// returns 2.0
The function has the following parameters:
- N: number of indexed elements.
- x: input
Complex128Array
. - strideX: index increment for
x
. - y: destination
Complex128Array
. - strideY: index increment for
y
.
The N
and stride parameters determine how values from x
are copied into y
. For example, to copy in reverse order every other value in x
into the first N
elements of y
,
var Complex128Array = require( '@stdlib/array-complex128' );
var real = require( '@stdlib/complex-float64-real' );
var imag = require( '@stdlib/complex-float64-imag' );
var x = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var y = new Complex128Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
zcopy( 2, x, -2, y, 1 );
var z = y.get( 0 );
// returns <Complex128>
var re = real( z );
// returns 5.0
var im = imag( z );
// returns 6.0
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Complex128Array = require( '@stdlib/array-complex128' );
var real = require( '@stdlib/complex-float64-real' );
var imag = require( '@stdlib/complex-float64-imag' );
// Initial arrays...
var x0 = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var y0 = new Complex128Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
// Create offset views...
var x1 = new Complex128Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Complex128Array( y0.buffer, y0.BYTES_PER_ELEMENT*2 ); // start at 3rd element
// Copy in reverse order every other value from `x1` into `y1`...
zcopy( 2, x1, -2, y1, 1 );
var z = y0.get( 2 );
// returns <Complex128>
var re = real( z );
// returns 7.0
var im = imag( z );
// returns 8.0
Copies values from x
into y
using alternative indexing semantics.
var Complex128Array = require( '@stdlib/array-complex128' );
var real = require( '@stdlib/complex-float64-real' );
var imag = require( '@stdlib/complex-float64-imag' );
var x = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Complex128Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
zcopy.ndarray( x.length, x, 1, 0, y, 1, 0 );
var z = y.get( 0 );
// returns <Complex128>
var re = real( z );
// returns 1.0
var im = imag( z );
// returns 2.0
The function has the following additional parameters:
- offsetX: starting index for
x
. - offsetY: starting index for
y
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to copy every other value in x
starting from the second value into the last N
elements in y
where x[i] = y[n]
, x[i+2] = y[n-1]
,...,
var Complex128Array = require( '@stdlib/array-complex128' );
var real = require( '@stdlib/complex-float64-real' );
var imag = require( '@stdlib/complex-float64-imag' );
var x = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var y = new Complex128Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
zcopy.ndarray( 2, x, 2, 1, y, -1, y.length-1 );
var z = y.get( y.length-1 );
// returns <Complex128>
var re = real( z );
// returns 3.0
var im = imag( z );
// returns 4.0
var discreteUniform = require( '@stdlib/random-base-discrete-uniform' );
var filledarrayBy = require( '@stdlib/array-filled-by' );
var Complex128 = require( '@stdlib/complex-float64-ctor' );
var zcopy = require( '@stdlib/blas-base-zcopy' );
function rand() {
return new Complex128( discreteUniform( 0, 10 ), discreteUniform( -5, 5 ) );
}
var x = filledarrayBy( 10, 'complex128', rand );
console.log( x.get( 0 ).toString() );
var y = filledarrayBy( 10, 'complex128', rand );
console.log( y.get( 0 ).toString() );
// Copy elements from `x` into `y` starting from the end of `y`:
zcopy( x.length, x, 1, y, -1 );
console.log( y.get( y.length-1 ).toString() );
#include "stdlib/blas/base/zcopy.h"
Copies values from X
into Y
.
const double x[] = { 1.0, 2.0, 3.0, 4.0 }; // interleaved real and imaginary components
double y[] = { 0.0, 0.0, 0.0, 0.0 };
c_zcopy( 2, (void *)x, 1, (void *)y, 1 );
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[in] void*
input array. - strideX:
[in] CBLAS_INT
index increment forX
. - Y:
[out] void*
output array. - strideY:
[in] CBLAS_INT
index increment forY
.
void c_zcopy( const CBLAS_INT N, const void *X, const CBLAS_INT strideX, void *Y, const CBLAS_INT strideY );
Copies values from X
into Y
using alternative indexing semantics.
const double x[] = { 1.0, 2.0, 3.0, 4.0 }; // interleaved real and imaginary components
double y[] = { 0.0, 0.0, 0.0, 0.0 };
c_zcopy_ndarray( 2, (void *)x, 1, 0, (void *)y, 1, 0 );
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[in] void*
input array. - strideX:
[in] CBLAS_INT
index increment forX
. - offsetX:
[in] CBLAS_INT
starting index forX
. - Y:
[out] void*
output array. - strideY:
[in] CBLAS_INT
index increment forY
. - offsetY:
[in] CBLAS_INT
starting index forY
.
void c_zcopy_ndarray( const CBLAS_INT N, const void *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, void *Y, const CBLAS_INT strideY, const CBLAS_INT offsetY );
#include "stdlib/blas/base/zcopy.h"
#include <stdio.h>
int main( void ) {
// Create strided arrays:
const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };
double y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
// Specify the number of elements:
const int N = 4;
// Specify stride lengths:
const int strideX = 1;
const int strideY = -1;
// Copy elements:
c_zcopy( N, (void *)x, strideX, (void *)y, strideY );
// Print the result:
for ( int i = 0; i < N; i++ ) {
printf( "y[ %i ] = %lf + %lfj\n", i, y[ i*2 ], y[ (i*2)+1 ] );
}
// Copy elements using alternative indexing semantics:
c_zcopy_ndarray( N, (void *)x, -strideX, N-1, (void *)y, strideY, N-1 );
// Print the result:
for ( int i = 0; i < N; i++ ) {
printf( "y[ %i ] = %lf + %lfj\n", i, y[ i*2 ], y[ (i*2)+1 ] );
}
}
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.