Data Description : https://www.kaggle.com/datasets/brandao/diabetes/data
- Update config.yaml
- Update schema.yaml
- Update params.yaml
- Update the entity
- Update the configuration manager in src config
- Update the components
- Update the pipeline
- Update the main.py
- Update the app.py
Clone the repository
https://github.com/sushilbal/mediwatch_mlopsconda create -p ./env python=3.12.4 -yconda activate ./envpip install -r requirements.txt# Finally run the following command
python app.pyNow,
open up you local host and port- mlflow ui
MLFLOW_TRACKING_URI=https://dagshub.com/sushilbal/mediwatch_mlops.mlflow
To authenticate with DagsHub, you should create a .env file in the root of the project.
- Get your DagsHub Token: Go to your DagsHub profile settings, navigate to the "Access Tokens" tab, and generate a new token if you don't have one.
- Create
.envfile: In the project's root directory, create a file named.envand add your credentials like this. This file is already in.gitignore, so it won't be tracked by git.
MLFLOW_TRACKING_URI=https://dagshub.com/sushilbal/mediwatch_mlops.mlflow
MLFLOW_TRACKING_USERNAME=<Your-DagsHub-Username>
MLFLOW_TRACKING_PASSWORD=<Your-DagsHub-Token>After setting these variables, you can run your training pipeline (main.py or hpo.py), and the metrics will be logged to your DagsHub repository.
#with specific access
1. EC2 access : It is virtual machine
2. ECR: Elastic Container registry to save your docker image in aws
#Description: About the deployment
1. Build docker image of the source code
2. Push your docker image to ECR
3. Launch Your EC2
4. Pull Your image from ECR in EC2
5. Lauch your docker image in EC2
#Policy:
1. AmazonEC2ContainerRegistryFullAccess
2. AmazonEC2FullAccess
- Save the URI: 566373416292.dkr.ecr.ap-south-1.amazonaws.com/mlproj
#optinal
sudo apt-get update -y
sudo apt-get upgrade
#required
curl -fsSL https://get.docker.com -o get-docker.sh
sudo sh get-docker.sh
sudo usermod -aG docker ubuntu
newgrp docker
setting>actions>runner>new self hosted runner> choose os> then run command one by one
AWS_ACCESS_KEY_ID=
AWS_SECRET_ACCESS_KEY=
AWS_REGION = us-east-1
AWS_ECR_LOGIN_URI = demo>> 566373416292.dkr.ecr.ap-south-1.amazonaws.com
ECR_REPOSITORY_NAME = simple-app
MLflow
- Its Production Grade
- Trace all of your expriements
- Logging & tagging your model