-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: add CNN class for MNIST classification
- Loading branch information
1 parent
a7d4e3a
commit 3a75d53
Showing
1 changed file
with
46 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.optim as optim | ||
from torchvision import transforms | ||
|
||
class CNN(nn.Module): | ||
""" | ||
Convolutional Neural Network for MNIST classification. | ||
""" | ||
def __init__(self): | ||
super(CNN, self).__init__() | ||
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) | ||
self.relu1 = nn.ReLU() | ||
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) | ||
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) | ||
self.relu2 = nn.ReLU() | ||
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) | ||
self.fc1 = nn.Linear(7*7*64, 128) | ||
self.relu3 = nn.ReLU() | ||
self.fc2 = nn.Linear(128, 10) | ||
|
||
def forward(self, x): | ||
x = self.pool1(self.relu1(self.conv1(x))) | ||
x = self.pool2(self.relu2(self.conv2(x))) | ||
x = x.view(-1, 7*7*64) | ||
x = self.relu3(self.fc1(x)) | ||
return self.fc2(x) | ||
|
||
def train(self, trainloader, lr, epochs): | ||
criterion = nn.CrossEntropyLoss() | ||
optimizer = optim.Adam(self.parameters(), lr=lr) | ||
|
||
for epoch in range(epochs): | ||
running_loss = 0.0 | ||
for i, data in enumerate(trainloader, 0): | ||
inputs, labels = data | ||
optimizer.zero_grad() | ||
outputs = self(inputs) | ||
loss = criterion(outputs, labels) | ||
loss.backward() | ||
optimizer.step() | ||
running_loss += loss.item() | ||
print(f"Epoch {epoch+1}, Loss: {running_loss/len(trainloader)}") | ||
|
||
def save_model(self, file_path): | ||
torch.save(self.state_dict(), file_path) |