Skip to content

Commit

Permalink
feat: Add CNN class with training method in cnn.py
Browse files Browse the repository at this point in the history
  • Loading branch information
sweep-nightly[bot] authored Nov 27, 2023
1 parent 7284908 commit 7cfe902
Showing 1 changed file with 48 additions and 0 deletions.
48 changes: 48 additions & 0 deletions src/cnn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms


class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=5)
self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(64 * 4 * 4, 128)
self.fc2 = nn.Linear(128, 10)

def forward(self, x):
x = self.pool(nn.functional.relu(self.conv1(x)))
x = self.pool(nn.functional.relu(self.conv2(x)))
x = x.view(-1, 64 * 4 * 4)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return nn.functional.log_softmax(x, dim=1)

def train_cnn(self, trainloader, epochs=3):
optimizer = optim.SGD(self.parameters(), lr=0.01)
criterion = nn.NLLLoss()

for epoch in range(epochs):
for images, labels in trainloader:
optimizer.zero_grad()
output = self(images)
loss = criterion(output, labels)
loss.backward()
optimizer.step()

torch.save(self.state_dict(), "mnist_cnn_model.pth")

transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])

trainset = datasets.MNIST('.', download=True, train=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=64, shuffle=True)

cnn = CNN()
cnn.train_cnn(trainloader)

0 comments on commit 7cfe902

Please sign in to comment.