Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor Training Loop into a Class (✓ Sandbox Passed) #163

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 11 additions & 10 deletions src/api.py
Original file line number Diff line number Diff line change
@@ -1,28 +1,29 @@
from fastapi import FastAPI, UploadFile, File
from PIL import Image
import torch
from fastapi import FastAPI, File, UploadFile
from PIL import Image
from torchvision import transforms

from main import Net # Importing Net class from main.py
from main import Trainer # Importing Trainer class from main.py

# Load the model
model = Net()
model.load_state_dict(torch.load("mnist_model.pth"))
model.eval()
trainer = Trainer()
trainer.load_model("mnist_model.pth") # Assuming load_model method exists

# Transform used for preprocessing the image
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]
)

app = FastAPI()


@app.post("/predict/")
async def predict(file: UploadFile = File(...)):
image = Image.open(file.file).convert("L")
image = transform(image)
image = image.unsqueeze(0) # Add batch dimension
with torch.no_grad():
output = model(image)
output = trainer.get_model()(image) # Assuming get_model method exists
_, predicted = torch.max(output.data, 1)
return {"prediction": int(predicted[0])}
59 changes: 35 additions & 24 deletions src/main.py
Original file line number Diff line number Diff line change
@@ -1,48 +1,59 @@
from PIL import Image
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from PIL import Image
from torch.utils.data import DataLoader
import numpy as np
from torchvision import datasets, transforms

# Step 1: Load MNIST Data and Preprocess
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]
)

trainset = datasets.MNIST('.', download=True, train=True, transform=transform)
trainset = datasets.MNIST(".", download=True, train=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=64, shuffle=True)


# Step 2: Define the PyTorch Model
class Net(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(28 * 28, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 10)

def forward(self, x):
x = x.view(-1, 28 * 28)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = self.fc3(x)
return nn.functional.log_softmax(x, dim=1)


class Trainer:
def __init__(self, learning_rate, model_path):
self.model = Net()
self.optimizer = optim.SGD(self.model.parameters(), lr=learning_rate)
self.criterion = nn.NLLLoss()
self.model_path = model_path

def train(self, epochs):
for epoch in range(epochs):
for images, labels in trainloader:
self.optimizer.zero_grad()
output = self.model(images)
loss = self.criterion(output, labels)
loss.backward()
self.optimizer.step()

def save_model(self):
torch.save(self.model.state_dict(), self.model_path)


# Step 3: Train the Model
model = Net()
optimizer = optim.SGD(model.parameters(), lr=0.01)
criterion = nn.NLLLoss()

# Training loop
epochs = 3
for epoch in range(epochs):
for images, labels in trainloader:
optimizer.zero_grad()
output = model(images)
loss = criterion(output, labels)
loss.backward()
optimizer.step()

torch.save(model.state_dict(), "mnist_model.pth")

# Now let's create a Trainer instance and train and save the model
trainer = Trainer(learning_rate=0.01, model_path="mnist_model.pth")
trainer.train(epochs=3)
trainer.save_model()
Loading