Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add new CNN class for MNIST handling and update model usage in API #71

Closed
wants to merge 11 commits into from
15 changes: 8 additions & 7 deletions src/api.py
Original file line number Diff line number Diff line change
@@ -1,22 +1,23 @@
from fastapi import FastAPI, UploadFile, File
from PIL import Image
import torch
from fastapi import FastAPI, File, UploadFile
from PIL import Image
from torchvision import transforms

from main import Net # Importing Net class from main.py

# Load the model
model = Net()
model.load_state_dict(torch.load("mnist_model.pth"))
model.load_state_dict(torch.load("mnist_cnn_model.pth"))
model.eval()

# Transform used for preprocessing the image
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]
)

app = FastAPI()


@app.post("/predict/")
async def predict(file: UploadFile = File(...)):
image = Image.open(file.file).convert("L")
Expand Down
60 changes: 60 additions & 0 deletions src/cnn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms


class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=5)
self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
self.fc1 = nn.Linear(4 * 4 * 64, 1024)
self.fc2 = nn.Linear(1024, 10)

def forward(self, x):
x = nn.functional.relu(self.conv1(x))
x = nn.functional.max_pool2d(x, 2)
x = nn.functional.relu(self.conv2(x))
x = nn.functional.max_pool2d(x, 2)
x = x.view(-1, 4 * 4 * 64)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return nn.functional.log_softmax(x, dim=1)


def load_data():
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]
)

trainset = datasets.MNIST(".", download=True, train=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=64, shuffle=True)
return trainloader


def train(model, trainloader):
optimizer = optim.SGD(model.parameters(), lr=0.01)
criterion = nn.NLLLoss()

epochs = 3
for _epoch in range(epochs):
for images, labels in trainloader:
optimizer.zero_grad()
output = model(images)
loss = criterion(output, labels)
loss.backward()
optimizer.step()

torch.save(model.state_dict(), "mnist_cnn_model.pth")


def main():
model = CNN()
trainloader = load_data()
train(model, trainloader)


if __name__ == "__main__":
main()
58 changes: 22 additions & 36 deletions src/main.py
Original file line number Diff line number Diff line change
@@ -1,48 +1,34 @@
from PIL import Image
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import numpy as np
from torchvision import datasets, transforms

from cnn import CNN
from train import train

epochs = 3
for _epoch in range(epochs):
for images, labels in trainloader:
optimizer.zero_grad()
output = model(images)
loss = criterion(output, labels)
loss.backward()
optimizer.step()
return model


# Step 1: Load MNIST Data and Preprocess
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]
)

trainset = datasets.MNIST('.', download=True, train=True, transform=transform)
trainset = datasets.MNIST(".", download=True, train=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=64, shuffle=True)

# Step 2: Define the PyTorch Model
class Net(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(28 * 28, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 10)

def forward(self, x):
x = x.view(-1, 28 * 28)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = self.fc3(x)
return nn.functional.log_softmax(x, dim=1)
model = CNN()

# Step 3: Train the Model
model = Net()
optimizer = optim.SGD(model.parameters(), lr=0.01)
criterion = nn.NLLLoss()

# Training loop
epochs = 3
for epoch in range(epochs):
for images, labels in trainloader:
optimizer.zero_grad()
output = model(images)
loss = criterion(output, labels)
loss.backward()
optimizer.step()

torch.save(model.state_dict(), "mnist_model.pth")
train(model, trainloader)
torch.save(model.state_dict(), "mnist_cnn_model.pth")
19 changes: 19 additions & 0 deletions src/train.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
import torch.nn as nn
import torch.optim as optim


def train(model, trainloader):
optimizer = optim.SGD(model.parameters(), lr=0.01)
criterion = nn.NLLLoss()

epochs = 3
for epoch in range(epochs):
running_loss = 0
for images, labels in trainloader:
optimizer.zero_grad()
output = model(images)
loss = criterion(output, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Training loss at epoch {epoch+1}: {running_loss/len(trainloader)}")
Loading