Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 13 additions & 11 deletions src/api.py
Original file line number Diff line number Diff line change
@@ -1,24 +1,26 @@
from fastapi import FastAPI, UploadFile, File
from PIL import Image
import torch
from fastapi import FastAPI, File, UploadFile
from PIL import Image
from torchvision import transforms

from main import Net # Importing Net class from main.py

# Load the model
model = Net()
model.load_state_dict(torch.load("mnist_model.pth"))
model.eval()
# Instantiate the trainer and load the model
trainer = MNISTTrainer()
model = trainer.load_model("mnist_model.pth")

# Transform used for preprocessing the image
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]
)

app = FastAPI()


@app.post("/predict/")
async def predict(file: UploadFile = File(...)):
async def predict(file: UploadFile = None):
if file is None:
file = File(...)
image = Image.open(file.file).convert("L")
image = transform(image)
image = image.unsqueeze(0) # Add batch dimension
Expand Down
110 changes: 69 additions & 41 deletions src/main.py
Original file line number Diff line number Diff line change
@@ -1,48 +1,76 @@
from PIL import Image
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import numpy as np

# Step 1: Load MNIST Data and Preprocess
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
from torchvision import datasets, transforms

trainset = datasets.MNIST('.', download=True, train=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=64, shuffle=True)

# Step 2: Define the PyTorch Model
class Net(nn.Module):
class MNISTTrainer:
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(28 * 28, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 10)

def forward(self, x):
x = x.view(-1, 28 * 28)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = self.fc3(x)
return nn.functional.log_softmax(x, dim=1)

# Step 3: Train the Model
model = Net()
optimizer = optim.SGD(model.parameters(), lr=0.01)
criterion = nn.NLLLoss()

# Training loop
epochs = 3
for epoch in range(epochs):
for images, labels in trainloader:
optimizer.zero_grad()
output = model(images)
loss = criterion(output, labels)
loss.backward()
optimizer.step()

torch.save(model.state_dict(), "mnist_model.pth")
self.transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]
)
self.trainset = None
self.trainloader = None
self.model = None
self.optimizer = None
self.criterion = nn.NLLLoss()
self.epochs = 3

def load_data(self):
self.trainset = datasets.MNIST(
".", download=True, train=True, transform=self.transform
)
self.trainloader = DataLoader(self.trainset, batch_size=64, shuffle=True)

class Net(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(28 * 28, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 10)

def forward(self, x):
x = x.view(-1, 28 * 28)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = self.fc3(x)
return nn.functional.log_softmax(x, dim=1)

def define_model(self):
self.model = self.Net()
self.optimizer = optim.SGD(self.model.parameters(), lr=0.01)

def train(self):
for epoch in range(self.epochs):
for images, labels in self.trainloader:
self.optimizer.zero_grad()
output = self.model(images)
loss = self.criterion(output, labels)
loss.backward()
self.optimizer.step()

def save_model(self, path="mnist_model.pth"):
torch.save(self.model.state_dict(), path)

def evaluate_model(self, validation_loader):
correct = 0
total = 0
with torch.no_grad():
for data in validation_loader:
images, labels = data
outputs = self.model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(
"Accuracy of the network on the validation images: %d %%"
% (100 * correct / total)
)


trainer = MNISTTrainer()
trainer.load_data()
trainer.define_model()
trainer.train()
trainer.save_model()