The aim of OPTiMaDe is to develop a common API, compliant with the JSON API 1.0 spec, to enable interoperability among databases that contain calculated properties of existing and hypothetical materials.
This repository contains a library of tools for implementing and consuming OPTiMaDe APIs in Python.
Both the OPTiMaDe specification and this repository are under development.
- OPTiMaDe Specification, the human-readable specification that this library is based on
- OpenAPI, the machine-readable format used to specify the OPTiMaDe API in
openapi.json
- Interactive documentation generated from
openapi.json
(see also interactive JSON editor) - pydantic, the library used for generating the OpenAPI schema from python models
- FastAPI, the framework used for generating the reference implementation from the
openapi.json
specification. - lark, the library used to parse the filter language in OPTiMaDe queries
# Clone this repository to your computer
git clone [email protected]:Materials-Consortia/optimade-python-tools.git
cd optimade-python-tools
# Ensure a Python>=3.7 (virtual) environment (example below using Anaconda/Miniconda)
conda create -n optimade python=3.7
conda activate optimade
# Install package and dependencies in editable mode (including "dev" requirements).
pip install -e .[dev]
# Run the tests (will install test requirements)
python setup.py test
# Install pre-commit environment (e.g., auto-formats code on `git commit`)
pre-commit install
# Optional: Install MongoDB (and set `USE_REAL_MONGO = yes` in optimade/server/congig.ini)
# Below method installs in conda environment and
# - starts server in background
# - ensures and uses ~/dbdata directory to store data
conda install -c anaconda mongodb
mkdir -p ~/dbdata && mongod --dbpath ~/dbdata --syslog --fork
# Start a development server (auto-reload on file changes at http://localhost:5000
# You can also execute ./run.sh
uvicorn optimade.server.main:app --reload --port 5000
# View auto-generated docs
open http://localhost:5000/docs
# View Open API Schema
open http://localhost:5000/openapi.json
When contributing to the Python code, please use the black code formatter.
Example use:
from optimade.filterparser import Parser
p = Parser(version=(0,9,7))
tree = p.parse("nelements<3")
print(tree)
Tree(start, [Tree(expression, [Tree(term, [Tree(atom, [Tree(comparison, [Token(VALUE, 'nelements'), Token(OPERATOR, '<'), Token(VALUE, '3')])])])])])
print(tree.pretty())
start
expression
term
atom
comparison
nelements
<
3
tree = p.parse('_mp_bandgap > 5.0 AND _cod_molecular_weight < 350')
print(tree.pretty())
start
expression
term
term
atom
comparison
_mp_bandgap
>
5.0
AND
atom
comparison
_cod_molecular_weight
<
350
# Assumes graphviz installed on system (e.g. `conda install -c anaconda graphviz`) and `pip install pydot`
from lark.tree import pydot__tree_to_png
pydot__tree_to_png(tree, "exampletree.png")
optimade.filterparser.Parser
will take user input to generate a lark.Tree
and feed that to a lark.Transformer
(for example, optimade.filtertransformers.mongo.MongoTransformer
), which will turn that tree into something useful
to your backend (for example, a MongoDB query dict
.)
# Example: Converting to MongoDB Query Syntax
from optimade.filtertransformers.mongo import MongoTransformer
transformer = MongoTransformer()
tree = p.parse('_mp_bandgap > 5.0 AND _cod_molecular_weight < 350')
query = transformer.transform(tree)
print(query)
{'$and': [{'_mp_bandgap': {'$gt': 5.0}}, {'_cod_molecular_weight': {'$lt': 350.0}}]}
There is also a basic JSON transformer
(optimade.filtertransformers.json.JSONTransformer
) you can use as a simple
example for developing your own transformer.
You can also use the JSON output it produces as an easy-to-parse input for a
"transformer" in your programming language of choice.
class JSONTransformer(Transformer):
def __init__(self, compact=False):
self.compact = compact
super().__init__()
def __default__(self, data, children):
items = []
for c in children:
if isinstance(c, Token):
token_repr = {
"@module": "lark.lexer",
"@class": "Token",
"type_": c.type,
"value": c.value,
}
if self.compact:
del token_repr["@module"]
del token_repr["@class"]
items.append(token_repr)
elif isinstance(c, dict):
items.append(c)
else:
raise ValueError(f"Unknown type {type(c)} for tree child {c}")
tree_repr = {
"@module": "lark",
"@class": "Tree",
"data": data,
"children": items,
}
if self.compact:
del tree_repr["@module"]
del tree_repr["@class"]
return tree_repr
If you would like to add a new transformer, please add
- a module (.py file) in the
optimade/filtertransformers
folder, - any additional Python requirements in
setup.py
andrequirements.txt
, - tests in
optimade/filtertransformers/tests
.