@@ -89,7 +89,7 @@ def create_labels_two_match_one_missed_inst(minimal_instance):
8989
9090 # Create user labelled instance.
9191 user_inst_1 = sio .Instance .from_numpy (
92- points = np .array (
92+ points_data = np .array (
9393 [
9494 [11.4 , 13.4 ],
9595 [13.6 , 15.1 ],
@@ -101,7 +101,7 @@ def create_labels_two_match_one_missed_inst(minimal_instance):
101101
102102 # Create Predicted Instance.
103103 pred_inst_1 = sio .PredictedInstance .from_numpy (
104- points = np .array (
104+ points_data = np .array (
105105 [
106106 [11.2 , 17.4 ],
107107 [12.8 , 15.1 ],
@@ -110,12 +110,12 @@ def create_labels_two_match_one_missed_inst(minimal_instance):
110110 ),
111111 skeleton = skeleton ,
112112 point_scores = np .array ([0.7 , 0.6 , 0.8 ]),
113- instance_score = 0.7 ,
113+ score = 0.7 ,
114114 )
115115
116116 # create second user instance
117117 user_inst_2 = sio .Instance .from_numpy (
118- points = np .array (
118+ points_data = np .array (
119119 [
120120 [1.4 , 2.9 ],
121121 [30.6 , 9.5 ],
@@ -126,7 +126,7 @@ def create_labels_two_match_one_missed_inst(minimal_instance):
126126 )
127127
128128 pred_inst_2 = sio .PredictedInstance .from_numpy (
129- points = np .array (
129+ points_data = np .array (
130130 [
131131 [2.3 , 2.2 ],
132132 [25.6 , 10.0 ],
@@ -135,12 +135,12 @@ def create_labels_two_match_one_missed_inst(minimal_instance):
135135 ),
136136 skeleton = skeleton ,
137137 point_scores = np .array ([0.7 , 0.6 , 0.6 ]),
138- instance_score = 0.6 ,
138+ score = 0.6 ,
139139 )
140140
141141 # create a user instance which shouldn't be matched with other predicted instances
142142 user_inst_3 = sio .Instance .from_numpy (
143- points = np .array (
143+ points_data = np .array (
144144 [
145145 [55.6 , 30.2 ],
146146 [10.1 , 18.5 ],
@@ -236,7 +236,7 @@ def create_labels_no_match_frame_pairs(minimal_instance):
236236
237237 # Create user labelled instance.
238238 user_inst_1 = sio .Instance .from_numpy (
239- points = np .array (
239+ points_data = np .array (
240240 [
241241 [11.4 , 13.4 ],
242242 [13.6 , 15.1 ],
@@ -248,7 +248,7 @@ def create_labels_no_match_frame_pairs(minimal_instance):
248248
249249 # Create Predicted Instance.
250250 pred_inst_1 = sio .PredictedInstance .from_numpy (
251- points = np .array (
251+ points_data = np .array (
252252 [
253253 [11.2 , 17.4 ],
254254 [12.8 , 15.1 ],
@@ -257,7 +257,7 @@ def create_labels_no_match_frame_pairs(minimal_instance):
257257 ),
258258 skeleton = skeleton ,
259259 point_scores = np .array ([0.7 , 0.6 , 0.8 ]),
260- instance_score = 0.7 ,
260+ score = 0.7 ,
261261 )
262262
263263 user_lf = sio .LabeledFrame (
@@ -310,7 +310,7 @@ def create_labels_more_predicted_instances(minimal_instance):
310310
311311 # Create user labelled instance.
312312 user_inst_1 = sio .Instance .from_numpy (
313- points = np .array (
313+ points_data = np .array (
314314 [
315315 [11.4 , 13.4 ],
316316 [13.6 , 15.1 ],
@@ -322,7 +322,7 @@ def create_labels_more_predicted_instances(minimal_instance):
322322
323323 # create predicted instance
324324 pred_inst_1 = sio .PredictedInstance .from_numpy (
325- points = np .array (
325+ points_data = np .array (
326326 [
327327 [11.2 , 17.4 ],
328328 [12.8 , 13.1 ],
@@ -331,12 +331,12 @@ def create_labels_more_predicted_instances(minimal_instance):
331331 ),
332332 skeleton = skeleton ,
333333 point_scores = np .array ([0.7 , 0.6 , 0.8 ]),
334- instance_score = 0.8 ,
334+ score = 0.8 ,
335335 )
336336
337337 # create second user instance
338338 user_inst_2 = sio .Instance .from_numpy (
339- points = np .array (
339+ points_data = np .array (
340340 [
341341 [1.4 , 2.9 ],
342342 [30.6 , 9.5 ],
@@ -348,7 +348,7 @@ def create_labels_more_predicted_instances(minimal_instance):
348348
349349 # create second predicted instance
350350 pred_inst_2 = sio .PredictedInstance .from_numpy (
351- points = np .array (
351+ points_data = np .array (
352352 [
353353 [1.3 , 2.9 ],
354354 [29.6 , 9.2 ],
@@ -357,12 +357,12 @@ def create_labels_more_predicted_instances(minimal_instance):
357357 ),
358358 skeleton = skeleton ,
359359 point_scores = np .array ([0.7 , 0.6 , 0.6 ]),
360- instance_score = 0.7 ,
360+ score = 0.7 ,
361361 )
362362
363363 # create a predicted instance with nan values
364364 pred_inst_3 = sio .PredictedInstance .from_numpy (
365- points = np .array (
365+ points_data = np .array (
366366 [
367367 [np .nan , np .nan ],
368368 [np .nan , np .nan ],
@@ -371,7 +371,7 @@ def create_labels_more_predicted_instances(minimal_instance):
371371 ),
372372 skeleton = skeleton ,
373373 point_scores = np .array ([0.7 , 0.6 , 0.6 ]),
374- instance_score = 0.7 ,
374+ score = 0.7 ,
375375 )
376376
377377 # create labeled frame with the instances
0 commit comments