Skip to content

tawheedrony/rul-estimation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

9 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

RUL Estimation

Remaining lifetime of degrading systems continuously monitored by degrading sensors

5.1 Data Simulation for the degradation process

System degradation equation: 𝑋(𝑑) = 𝛼𝑑 + 𝜎𝐡1(𝑑) Sensor degradation equation: 𝑆(𝑑) = 𝛽𝑑 + πœ‚π΅2(𝑑) Resultant degradation : π‘Œ (𝑑) = 𝑋(𝑑) + 𝑆(𝑑) + πœ–

5.2 Parameter Estimation of the degradation Process

𝛼, 𝜎 -> MAP (Maximum A Posteriori Estimation)
Inputs : Calibration data (π›₯𝑋/X_c)

Outputs :
πœƒ1^ = (𝛼, 𝜎)
𝛼 -> System Drift
𝜎 -> System Diffusion

πœƒ1^ = argmax(πœƒ1) 𝑝(πœƒ1 | π›₯𝑋) = argmax(πœƒ1) 𝑝(π›₯𝑋 | πœƒ1) * 𝑝(πœƒ1)
Here,
𝑝(π›₯𝑋 | πœƒ1) => likelihood of observing π›₯𝑋 given πœƒ1
𝑝(πœƒ1) => Prior probability of πœƒ1

Steps :

  1. Set prior mean and std of 𝛼 to be 𝛼0 = 9.95, and 𝜎0 = 1.
  2. Set prior mean and std of 𝜎 to be πœŽπœ‡ = 4, and 𝜎1 = 1.
  3. Calculate likelihood and prior probabilities
  4. Calculate MAP

𝛽, πœ‚ and πœŽπœ– -> MLE (Maximum Likelihood Estimation)

Measurement increments π›₯π‘Œ follows a multi-variate Gaussian distribution, i.e., π›₯π‘Œ ∼ 𝑁(πœ”π›₯𝑑, 𝛺), where πœ” = 𝛼 + 𝛽 and 𝛺 are the variance–covariance matrices.

𝛺 = (𝜎2 + πœ‚2)π›₯𝑑𝑗 + 2πœŽπœ–2 From 𝛺, we need to find the estimates of πœ‚ and 𝜎. But to solve the problem of β€˜β€˜identifiability’’ is to estimate the parameters (πœ‚ and 𝜎) with measurements sampled at a different interval.

5.3 State estimation and RUL evaluation

Kalman Filter

About

Remaining lifetime of degrading systems continuously monitored by degrading sensors

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages