Skip to content

ual/Traffic-Assignment-Problem

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This is a python implementation of the User Equilibrium and Social Optimum Traffic Assignment using the Frank-Wolfe Algorithm. It uses the python-igraph library to calculate the all_or_nothing assignments in each iterations. It includes implementation for an LA network and Chicago Regional Network. The implementation also allows to increase/decrease the demand by specifying a ratio.

For example to run the program on the LA network:
python Demand_Study.py LA 0.5 UE
The first argument LA specifies the name of the network, 0.5 means that the original demand will be halved, UE indicates that this is User Equilibrium case

As another example:
python Demand_Study.py ChicagoRegional 1 SO
This command runs the Frank-Wolfe algorithm on the Chicago Regional Network, with the original demand (demand X 1), and looking for the Social Optimum SO.

For access to network data for the LA network, please send email to [email protected]
The data for the chicago network is available at this github account

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • JavaScript 96.0%
  • HTML 2.1%
  • Python 1.8%
  • R 0.1%
  • Shell 0.0%
  • Batchfile 0.0%