-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
205c9d7
commit 3768734
Showing
1 changed file
with
232 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,232 @@ | ||
Definition dec (X: Type) : Type := X + (X -> False). | ||
Definition decider {X} (p: X -> Prop) := forall x, dec (p x). | ||
Definition iffT (X Y: Type) : Type := (X -> Y) * (Y -> X). | ||
Notation "X <=> Y" := (iffT X Y) (at level 95, no associativity). | ||
Notation sig := sigT. | ||
Notation Sig := existT. | ||
Notation pi1 := projT1. | ||
Notation pi2 := projT2. | ||
Notation "'Sigma' x .. y , p" := | ||
(sig (fun x => .. (sigT (fun y => p)) ..)) | ||
(at level 200, x binder, right associativity, | ||
format "'[' 'Sigma' '/ ' x .. y , '/ ' p ']'") | ||
: type_scope. | ||
Definition inv {X Y: Type} (g: Y -> X) (f: X -> Y) := forall x, g (f x) = x. | ||
Inductive injection (X Y: Type) : Type := | ||
| Injection {f: X -> Y} {g: Y -> X} (_: inv g f). | ||
|
||
|
||
|
||
(*** Equality deciders *) | ||
|
||
Definition eqdec X := forall x y: X, dec (x = y). | ||
|
||
Definition eqdec_bot : eqdec False. | ||
Proof. | ||
intros []. | ||
Qed. | ||
|
||
Definition eqdec_nat : eqdec nat. | ||
Proof. | ||
hnf; induction x as [|x IH]; destruct y as [|y]; unfold dec in *. | ||
1-3: intuition congruence. | ||
destruct (IH y); intuition congruence. | ||
Qed. | ||
|
||
Definition eqdec_injection X Y : | ||
injection X Y -> eqdec Y -> eqdec X. | ||
Proof. | ||
intros [f g H] d x1 x2. | ||
destruct (d (f x1) (f x2)) as [H1|H1]; | ||
unfold dec; intuition congruence. | ||
Qed. | ||
|
||
Definition eqdec_option X : | ||
eqdec X <=> eqdec (option X). | ||
Proof. | ||
split; intros d. | ||
- intros [x1|] [x2|]. | ||
2-4: unfold dec; intuition congruence. | ||
specialize (d x1 x2). | ||
unfold dec in *; intuition congruence. | ||
- intros x1 x2. | ||
specialize (d (Some x1) (Some x2)). | ||
unfold dec in *; intuition congruence. | ||
Qed. | ||
|
||
(*** Enumerators *) | ||
|
||
Definition enum X := Sigma f: nat -> option X, forall x, exists n, f n = Some x. | ||
|
||
Definition enum_bot : enum False. | ||
Proof. | ||
exists (fun _ => None). intros []. | ||
Qed. | ||
|
||
Definition enum_nat : enum nat. | ||
Proof. | ||
exists Some. eauto. | ||
Qed. | ||
|
||
Definition enum_injection X Y : | ||
injection X Y -> enum Y -> enum X. | ||
Proof. | ||
intros [f g H] [e H1]. | ||
exists (fun n => match e n with Some x => Some (g x) | None => None end). | ||
intros x. specialize (H1 (f x)) as [n H1]. | ||
exists n. rewrite H1. congruence. | ||
Qed. | ||
|
||
Definition enum_option X : | ||
enum X <=> enum (option X). | ||
Proof. | ||
split; intros [e H]. | ||
- exists (fun n => Some match n with 0 => None| S n => e n end). | ||
intros [x|]. | ||
+ specialize (H x) as [n H]. exists (S n). congruence. | ||
+ exists 0. reflexivity. | ||
- exists (fun n => match e n with Some (Some x) => Some x | _ => None end). | ||
intros x. | ||
specialize (H (Some x)) as [n H]. | ||
exists n. rewrite H. reflexivity. | ||
Qed. | ||
|
||
(*** EWOs *) | ||
|
||
Definition ewo X := forall (p: X -> Prop), decider p -> ex p -> sig p. | ||
|
||
Definition ewo_bot : ewo False. | ||
Proof. | ||
intros p _ [[] _]. | ||
Qed. | ||
|
||
From Coq Require Import ConstructiveEpsilon. | ||
|
||
Definition ewo_nat : ewo nat. | ||
Proof. | ||
intros p H1 H2. | ||
apply constructive_indefinite_ground_description_nat in H2. | ||
- destruct H2; eauto. | ||
- intros n. destruct (H1 n); auto. | ||
Qed. | ||
|
||
Definition ewo_injection X Y : | ||
injection X Y -> ewo Y -> ewo X. | ||
Proof. | ||
intros [f g H] e p d H1. | ||
destruct (e (fun y => p (g y))) as [y H2]. | ||
- intros y. apply d. | ||
- destruct H1 as [x H1]. exists (f x). congruence. | ||
- eauto. | ||
Qed. | ||
|
||
Definition ewo_option X : | ||
ewo X <=> ewo (option X). | ||
Proof. | ||
split; intros e p d H. | ||
- destruct (d None) as [H1|H1]. {eauto.} | ||
destruct (e (fun x => p (Some x))) as [x H2]. | ||
+ intros x. apply d. | ||
+ destruct H as [[x|] H]. | ||
* eauto. | ||
* exfalso. auto. | ||
+ eauto. | ||
- destruct (e (fun a => match a with Some x => p x | None => False end)) as [[x|] H1]. | ||
+ intros [x|]. {apply d.} right. easy. | ||
+ destruct H as [x H]. exists (Some x). easy. | ||
+ eauto. | ||
+ contradict H1. | ||
Qed. | ||
|
||
(*** Countable Types *) | ||
|
||
Definition cty X := (eqdec X * enum X) %type. | ||
|
||
Definition cty_bot : cty False. | ||
Proof. | ||
split. apply eqdec_bot. apply enum_bot. | ||
Qed. | ||
|
||
Definition cty_nat : cty nat. | ||
Proof. | ||
split. apply eqdec_nat. apply enum_nat. | ||
Qed. | ||
|
||
Definition cty_injection X Y : | ||
injection X Y -> cty Y -> cty X. | ||
Proof. | ||
intros H [d e]. split. | ||
- apply eqdec_injection in H; assumption. | ||
- apply enum_injection in H; assumption. | ||
Qed. | ||
|
||
Definition cty_option X : | ||
cty X <=> cty (option X). | ||
Proof. | ||
split; intros [d e]; split. | ||
- revert d. apply eqdec_option. | ||
- revert e. apply enum_option. | ||
- revert d. apply eqdec_option. | ||
- revert e. apply enum_option. | ||
Qed. | ||
|
||
Fact cty_enum_sigma {X} : | ||
cty X -> Sigma f: nat -> option X, forall x, Sigma n, f n = Some x. | ||
Proof. | ||
intros (d&e&H). | ||
exists e. intros x. apply ewo_nat. | ||
- intros n. apply eqdec_option in d. apply d. | ||
- apply H. | ||
Qed. | ||
|
||
Fact cty_equiv X : | ||
cty X <=> injection (option X) nat. | ||
Proof. | ||
split. | ||
- intros [h G] %cty_enum_sigma. | ||
exists (fun a => match a with Some x => S (pi1 (G x)) | None => 0 end) | ||
(fun n => match n with 0 => None | S n => h n end). | ||
intros [x|]. apply (pi2 (G x)). reflexivity. | ||
- intros H. apply cty_injection in H. | ||
+ revert H. apply cty_option. | ||
+ apply cty_nat. | ||
Qed. | ||
|
||
Fact cty_ewo X : | ||
cty X -> ewo X. | ||
Proof. | ||
intros H %cty_equiv %ewo_injection. | ||
- revert H. apply ewo_option. | ||
- apply ewo_nat. | ||
Qed. | ||
|
||
Fact injection_nat_option X : | ||
injection X nat -> injection (option X) nat. | ||
Proof. | ||
intros [f g H]. | ||
exists (fun a => match a with Some x => S (f x) | None => 0 end) | ||
(fun n => match n with 0 => None | S n => Some ( g n) end). | ||
intros [x|]; congruence. | ||
Qed. | ||
|
||
Fact cty_injection_nat X : | ||
injection X nat -> cty X. | ||
Proof. | ||
intros H. apply cty_equiv, injection_nat_option, H. | ||
Qed. | ||
|
||
Fact injection_option X Y : | ||
injection (option X) Y -> X -> injection X Y. | ||
Proof. | ||
intros [f g H] x0. | ||
exists (fun x => f (Some x)) | ||
(fun y => match g y with Some x => x | None => x0 end). | ||
intros x. rewrite H. reflexivity. | ||
Qed. | ||
|
||
Fact cty_flat_injection X : | ||
cty X -> X -> injection X nat. | ||
Proof. | ||
intros H %cty_equiv. apply injection_option, H. | ||
Qed. | ||
g |