- Author(s):
- Yannick Forster
- Felix Jahn
- Dominik Kirst
- Fabian Kunze
- Nils Lauermann
- Niklas Mück
- Maintainer:
- Yannick Forster (@yforster)
- License: MIT License
- Compatible Coq versions: 8.17
- Additional dependencies:
- the
stdpp
library - optionally, the Coq Library of Undecidability Proofs
- the
- Coq namespace:
SyntheticComputability
- Related publication(s):
- Church’s Thesis and Related Axioms in Coq’s Type Theory doi:10.4230/LIPIcs.CSL.2021.21
- Parametric Church’s Thesis: Synthetic Computability Without Choice doi:10.1007/978-3-030-93100-1_6
- Computability in Constructive Type Theory doi:10.22028/D291-35758
- Synthetic Kolmogorov Complexity in Coq doi:10.4230/LIPIcs.ITP.2022.12
- Constructive and Synthetic Reducibility Degrees: Post's Problem for Many-One and Truth-Table Reducibility in Coq doi:10.4230/LIPIcs.CSL.2023.21
- A Computational Cantor-Bernstein and Myhill's Isomorphism Theorem in Constructive Type Theory (Proof Pearl) doi:10.1145/3573105.3575690
- Oracle Computability and Turing Reducibility in the Calculus of Inductive Constructions doi:10.48550/arXiv.2307.15543
This library contains results on synthetic computability theory.
- Equivalence proofs for various axioms of synthetic computability in
Axioms/Equivalence.v
- Rice's theorem in
Basic/Rice.v
- Myhill's isomorphism theorem in
Basic/Myhill.v
- The existence of simple and hypersimple predicates in
ReducibilityDegrees.summary_reducibility_degrees.v
- A proof that nonrandom numbers defined via Kolmogorov Complexity form a simple predicate in
KolmogorovComplexity/Kolmogorov_gen.v
- A definition of oracle computability and Turing reducibility in
TuringReducibility/OracleComputability.v
- A proof of Post's theorem (
PT
) inTuringReducibility/SemiDec.v
- A proof of Post's theorem about the arithmetical hierarchy in
PostsTheorem/PostsTheorem.v
- A proof of the Kleene-Post theorem in
PostsTheorem/KleenePostTheorem.v
opam switch create coq-synthetic-computability --packages=ocaml-variants.4.14.0+options,ocaml-option-flambda
eval $(opam env)
opam repo add coq-released https://coq.inria.fr/opam/released
opam install coq.8.17.0 coq-equations.1.3+8.17 coq-stdpp.1.8.0
cd theories
make
make install
To build the part of the development relying on models of computation, in addition you have to
opam install coq-library-undecidability.1.1+8.17
make models
make install-models