Below is a high level overview of the project structure:
.
├── data # Sample experimental data
├── active_learning # Experiments in active learning
├── notebooks # Notebooks for exploring data
├── services # Implementations of different apis/services
│ ├── data_api # Data API: For pulling signals for display
│ ├── event_api # Event API: For storing event data and tags
│ ├── model_api # Model API: For running and quering models
│ └── ui # UI: the front end of the application
├── README.md # This README doc
└── docker-compose.yml # Master docker compose for running the application
- Install
docker
anddocker compose
: https://docs.docker.com/engine/install/ - Install and setup
git lfs
: https://git-lfs.com/
Configure git LFS and pull the model
git lfs install
git lfs pull
Build the relevant dataset for the ML model locally
uv venv --python 3.12.6
source .venv/bin/activate
uv pip install -r ./scripts/requirements.txt
python -m scripts.build_dataset scripts/shots.csv
Run the application by running the following command:
docker compose --env-file .env.dev up
This will start the following services:
Service URL | Description |
---|---|
http://localhost:3001/ |
User Interface |
http://localhost:8082/ |
MongoExpress Admin Panel |
http://localhost:8000/ |
Event Database API |
http://localhost:8001/ |
Model Runner API |
http://localhost:8002/ |
Data API |