-
Notifications
You must be signed in to change notification settings - Fork 930
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #631 from m7mdhka/main
Integrating FAISS in VannaAI
- Loading branch information
Showing
2 changed files
with
177 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from .faiss import FAISS |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,176 @@ | ||
import os | ||
import json | ||
import uuid | ||
from typing import List, Dict, Any | ||
|
||
import faiss | ||
import numpy as np | ||
import pandas as pd | ||
|
||
from ..base import VannaBase | ||
from ..exceptions import DependencyError | ||
|
||
class FAISS(VannaBase): | ||
def __init__(self, config=None): | ||
if config is None: | ||
config = {} | ||
|
||
VannaBase.__init__(self, config=config) | ||
|
||
try: | ||
import faiss | ||
except ImportError: | ||
raise DependencyError( | ||
"FAISS is not installed. Please install it with 'pip install faiss-cpu' or 'pip install faiss-gpu'" | ||
) | ||
|
||
try: | ||
from sentence_transformers import SentenceTransformer | ||
except ImportError: | ||
raise DependencyError( | ||
"SentenceTransformer is not installed. Please install it with 'pip install sentence-transformers'." | ||
) | ||
|
||
self.path = config.get("path", ".") | ||
self.embedding_dim = config.get('embedding_dim', 384) | ||
self.n_results_sql = config.get('n_results_sql', config.get("n_results", 10)) | ||
self.n_results_ddl = config.get('n_results_ddl', config.get("n_results", 10)) | ||
self.n_results_documentation = config.get('n_results_documentation', config.get("n_results", 10)) | ||
self.curr_client = config.get("client", "persistent") | ||
|
||
if self.curr_client == 'persistent': | ||
self.sql_index = self._load_or_create_index('sql_index.faiss') | ||
self.ddl_index = self._load_or_create_index('ddl_index.faiss') | ||
self.doc_index = self._load_or_create_index('doc_index.faiss') | ||
elif self.curr_client == 'in-memory': | ||
self.sql_index = faiss.IndexFlatL2(self.embedding_dim) | ||
self.ddl_index = faiss.IndexFlatL2(self.embedding_dim) | ||
self.doc_index = faiss.IndexFlatL2(self.embedding_dim) | ||
elif isinstance(self.curr_client, list) and len(self.curr_client) == 3 and all(isinstance(idx, faiss.Index) for idx in self.curr_client): | ||
self.sql_index = self.curr_client[0] | ||
self.ddl_index = self.curr_client[1] | ||
self.doc_index = self.curr_client[2] | ||
else: | ||
raise ValueError(f"Unsupported storage type was set in config: {self.curr_client}") | ||
|
||
self.sql_metadata: List[Dict[str, Any]] = self._load_or_create_metadata('sql_metadata.json') | ||
self.ddl_metadata: List[Dict[str, str]] = self._load_or_create_metadata('ddl_metadata.json') | ||
self.doc_metadata: List[Dict[str, str]] = self._load_or_create_metadata('doc_metadata.json') | ||
|
||
model_name = config.get('embedding_model', 'all-MiniLM-L6-v2') | ||
self.embedding_model = SentenceTransformer(model_name) | ||
|
||
def _load_or_create_index(self, filename): | ||
filepath = os.path.join(self.path, filename) | ||
if os.path.exists(filepath): | ||
return faiss.read_index(filepath) | ||
return faiss.IndexFlatL2(self.embedding_dim) | ||
|
||
def _load_or_create_metadata(self, filename): | ||
filepath = os.path.join(self.path, filename) | ||
if os.path.exists(filepath): | ||
with open(filepath, 'r') as f: | ||
return json.load(f) | ||
return [] | ||
|
||
def _save_index(self, index, filename): | ||
if self.curr_client == 'persistent': | ||
filepath = os.path.join(self.path, filename) | ||
faiss.write_index(index, filepath) | ||
|
||
def _save_metadata(self, metadata, filename): | ||
if self.curr_client == 'persistent': | ||
filepath = os.path.join(self.path, filename) | ||
with open(filepath, 'w') as f: | ||
json.dump(metadata, f) | ||
|
||
def generate_embedding(self, data: str, **kwargs) -> List[float]: | ||
embedding = self.embedding_model.encode(data) | ||
assert embedding.shape[0] == self.embedding_dim, \ | ||
f"Embedding dimension mismatch: expected {self.embedding_dim}, got {embedding.shape[0]}" | ||
return embedding.tolist() | ||
|
||
def _add_to_index(self, index, metadata_list, text, extra_metadata=None) -> str: | ||
embedding = self.generate_embedding(text) | ||
index.add(np.array([embedding], dtype=np.float32)) | ||
entry_id = str(uuid.uuid4()) | ||
metadata_list.append({"id": entry_id, **(extra_metadata or {})}) | ||
return entry_id | ||
|
||
def add_question_sql(self, question: str, sql: str, **kwargs) -> str: | ||
entry_id = self._add_to_index(self.sql_index, self.sql_metadata, question + " " + sql, {"question": question, "sql": sql}) | ||
self._save_index(self.sql_index, 'sql_index.faiss') | ||
self._save_metadata(self.sql_metadata, 'sql_metadata.json') | ||
return entry_id | ||
|
||
def add_ddl(self, ddl: str, **kwargs) -> str: | ||
entry_id = self._add_to_index(self.ddl_index, self.ddl_metadata, ddl, {"ddl": ddl}) | ||
self._save_index(self.ddl_index, 'ddl_index.faiss') | ||
self._save_metadata(self.ddl_metadata, 'ddl_metadata.json') | ||
return entry_id | ||
|
||
def add_documentation(self, documentation: str, **kwargs) -> str: | ||
entry_id = self._add_to_index(self.doc_index, self.doc_metadata, documentation, {"documentation": documentation}) | ||
self._save_index(self.doc_index, 'doc_index.faiss') | ||
self._save_metadata(self.doc_metadata, 'doc_metadata.json') | ||
return entry_id | ||
|
||
def _get_similar(self, index, metadata_list, text, n_results) -> list: | ||
embedding = self.generate_embedding(text) | ||
D, I = index.search(np.array([embedding], dtype=np.float32), k=n_results) | ||
return [] if len(I[0]) == 0 or I[0][0] == -1 else [metadata_list[i] for i in I[0]] | ||
|
||
def get_similar_question_sql(self, question: str, **kwargs) -> list: | ||
return self._get_similar(self.sql_index, self.sql_metadata, question, self.n_results_sql) | ||
|
||
def get_related_ddl(self, question: str, **kwargs) -> list: | ||
return [metadata["ddl"] for metadata in self._get_similar(self.ddl_index, self.ddl_metadata, question, self.n_results_ddl)] | ||
|
||
def get_related_documentation(self, question: str, **kwargs) -> list: | ||
return [metadata["documentation"] for metadata in self._get_similar(self.doc_index, self.doc_metadata, question, self.n_results_documentation)] | ||
|
||
def get_training_data(self, **kwargs) -> pd.DataFrame: | ||
sql_data = pd.DataFrame(self.sql_metadata) | ||
sql_data['training_data_type'] = 'sql' | ||
|
||
ddl_data = pd.DataFrame(self.ddl_metadata) | ||
ddl_data['training_data_type'] = 'ddl' | ||
|
||
doc_data = pd.DataFrame(self.doc_metadata) | ||
doc_data['training_data_type'] = 'documentation' | ||
|
||
return pd.concat([sql_data, ddl_data, doc_data], ignore_index=True) | ||
|
||
def remove_training_data(self, id: str, **kwargs) -> bool: | ||
for metadata_list, index, index_name in [ | ||
(self.sql_metadata, self.sql_index, 'sql_index.faiss'), | ||
(self.ddl_metadata, self.ddl_index, 'ddl_index.faiss'), | ||
(self.doc_metadata, self.doc_index, 'doc_index.faiss') | ||
]: | ||
for i, item in enumerate(metadata_list): | ||
if item['id'] == id: | ||
del metadata_list[i] | ||
new_index = faiss.IndexFlatL2(self.embedding_dim) | ||
embeddings = [self.generate_embedding(json.dumps(m)) for m in metadata_list] | ||
if embeddings: | ||
new_index.add(np.array(embeddings, dtype=np.float32)) | ||
setattr(self, index_name.split('.')[0], new_index) | ||
|
||
if self.curr_client == 'persistent': | ||
self._save_index(new_index, index_name) | ||
self._save_metadata(metadata_list, f"{index_name.split('.')[0]}_metadata.json") | ||
|
||
return True | ||
return False | ||
|
||
def remove_collection(self, collection_name: str) -> bool: | ||
if collection_name in ["sql", "ddl", "documentation"]: | ||
setattr(self, f"{collection_name}_index", faiss.IndexFlatL2(self.embedding_dim)) | ||
setattr(self, f"{collection_name}_metadata", []) | ||
|
||
if self.curr_client == 'persistent': | ||
self._save_index(getattr(self, f"{collection_name}_index"), f"{collection_name}_index.faiss") | ||
self._save_metadata([], f"{collection_name}_metadata.json") | ||
|
||
return True | ||
return False |